Lecture Notes In
Mathematics

A collection of informal reports and seminars
Edited by A Dold Heidelberg and B Eckmann, Zurich

229

Jussi Viisila

University of Helsinki Helsinki/Finland

Lectures on n-Dimensional
Quasiconformal Mappings

Springer-Verlag
Berlin - Heidelberg - New York 1971



AMS Subject Classifications (1970): 30 A 60

ISBN 3-540-05648-3 Springer-Verlag Berlin - Heidelberg - New York
ISBN 0-387-05648-3 Springer-Verlag New York - Heidelberg - Berlin

This work 1s subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine
or similar means, and storage in data banks.

Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher,
the amount of the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin - Heidelberg 1971. Library of Congress Catalog Card Number 71-177355. Printed in Germany.
Offsetdruck: Julius Beltz, Hemsbach/Bergstr.



PREFACE

These notes are based on ry lectures at the university of
Helsinki in 1967-1968. They were first supposed to be published in
another series, and a complete manuscript was given to the publisher
in March 1969. When it turned out that the notes could not be pub-
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original manuscript and added references to the newest literature.
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R. N8kki, and S. Rickman, who read the manuscript and made valuable

suggestions,

Helsinki Jussi Vdis&ld
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is also defined if A 1is a subset of a given n-dimensional linear
submanifold or of a given n-dimensional sthere in Rn', n'>n . The
subscript n may be omitted if there is no danger of misunderstand-
ing. The measure of a set AcR® is defined as the measure of
ANA{oY .
JQ:(A) is the a-dimensional Hausdorff outer measure of A, de-
fined in Section 30, The star is omitted if A 1is measurable.
The integral of a function f£:A->R' over a set EcA is
denoted by
Jﬂfdmn or xff(x)dmn(x).
B E
It is defined if E and f are mn-measurable and if either f 1is
non-negative or J;|f|dmn<<n . In the first case, the integral may
have the value @ . In the second case, f 1is called integrable over
E . The subscript n may again be omitted. Also E can be omitted
if E=&".
The class of Borel sets in a torological space is the smallest
o-algebra which contains the open sets. If A 1is a Borel set and if
T 1is a topological space, a mapping f:A—=>T 1is said to be a Borel

function if f"qU is a Borel set for every opren set U in T.

n n .-
£1n = mn(B ) and W, = mn(S ) . Bxplicitly,
k k+1 _k
27 2 kA
Wpoq = B8 s Oop q = oy Dok T TR (aeo)
Ck = the class of k times continuously differentiable marpings.

LP - the class of functions f such that If1P is integrable.
If A: Rn—>Rn is a linear marying, then
1Al = max 14ht, £(A) = min 14ht,
hi=1 1hi=1
and detA 1is the determinant of A.
The words ''increasing!" and ‘''decreasing' are used in the weak

sense. For example, a function f: (a, b)~>£§ is increasing if



INTRODUCTION

Ry a classical theorem of Liouville, every conformal mapring
of a domain in the euclidean n-stace Rn, n>3%, is a restriction
of a MObius transformation, that is, member of the group generated
by similarity mappings and inversions in stheres. For this reason,
the theory of conformal maprings is essentially 2-dimensional. The
situation is different with quasiconformral maprings. Let us consider
a diffeomorphism f of a domain DcR® onto a domain D'c R®. The
derivative of f at a toint xeD 1is a bijective linear mwapping
£'(x) : R®* =>R"®. The diffeomorphism f is called quasiconformal if
the ratio

max I1f'(x) hl

H(x , £) - nt=n
min 1f'(x) hi
tht=1

is bounded in D . Usually it is more convenient to use a more gener-
al definition in which f is not required to be everywhere differ-
entiable. However, it is easy to see that there are plenty of quasi-
conformal mappings in R®. For examrle, if f ! D—=> D' 1is a diffeo-
morphism and if DO is a domain whose closure is & compact subset
of D, then the restriction f 1 DO is quasiconformal. Furthermore,
while the conformal image of a ball is always a ball or a half space,
it is possible to construct a quasiconformal rapping of a ball onto
a domain which has non-accessible boundary points (Gehring-Vdis&ld
[2, p. 60]1).

2-dimensional quasiconformal marrings were introduced by
Grotzsch {11 in 1928. A rather comprehensive treatment of the present
state of the theory is given in the excellent books of Ahlfors {3}
and Lehto-Virtanen {13. Higher dimensional quasiconformal mappings

were first considered by Soviet mathematicians Lavrentiev [1], Margu-
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geviz (1] and Kreines {1] in 1938-1941, but the theory was practical-
ly forgotten for 18 years. Since 1959, however, the n-dimensional
guasiconformal maprings have been studied rather extensively by a
great number of authors in several countries,

The purrose of these notes is to give an exposition of the basic
theory of quasiconformal mappings in R". The aforementioned books of
Ahlfors and Lehto-Virtanen give the historical background. although
no previous knowledge is needed on 2-dimensional quasiconformal map-
pings. In fact, our proofs aprly also to the case n=2. However, in
this case the proofs could often be simplified, thanks to the Riemann
marping theorem.

We assume that the reader is familiar with the basic facts of
the theory of measure and integration. More advanced results of real
analysis are given in Chapter 3., Almost all what is needed and much
that is included, is contained in the books of Munroe {11 and saxs
3.

We also assume some knowledge on the topology of euclidean
spraces, The required facts can be found in the books of Newman 11
and Wilder {1, pp. 51-68]. We shall use the phrase ''by Topology"
when we are appealing to a topological result (such as the invariance
of domain) which is intuitively obvious but often rather profound.

Two important topics have been omitted. We do not prove the the-
orem of Gehring and Re$etnjak, which states that every 71-quasicon-
formal mapping is a MObius transformation for n>3% . Neither do we
present Gehring's theory on the symmetrization of rings. This seems
to be unavoidable when deriving sharp bounds in certain modulus esti-
mates. Our results are, therefore, often qualitative rather than
quantitative.

The guasiconformal maprings form a subclass of the class of
guasiregular maprings, which are not necessarily homeomorphisms.

This larger class has not been systematically studied until since
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1966, and it is not considered in these notes.

References and brief historical remarks are given at the ends
of the sections. The bibliography contains only the publications
which are referred to in the text. A very comprehensive bibliography

is given in the monograph of Caraman [1].

NOTATION AND TERMINOLOGY

N = the set of positive integers.

Z = the set of integers.

Rq = the set of real numbers.

R®" = the n-dimensional euclidean space. We identify Rn"/l with

the substace xn==O of RM.
The letter n denotes always the dimension of the space in
question.

€h s cee € = the coordinate unit vectors of R". For example,

n
eq=(1,0,...,0).
The coordinates of a point x& R® are denoted by Xg s eee s X

Thus X=Xqeq+ .0u +X € However, we use subscripts also as indices

n'n*
if there is no danger of misunderstanding. For example, & sequence of
points in R® is often denoted by X4 4 %54 «v. Or DY (xj) . The
norm of a vector x&R® is written as

Ixl = (x%-+... +xi)q/2.

B%(x,,T) is the ball {xs R® 1 1x—x_1<r}. B%(r)=38%0, ).
B" = B%(0, 1) .

Sn_q(xo ,T) is the sphere {xesR"I Ix-x 1 = r}. Sn_q(r) =
Sn_q(O sy T) W gn-1 =Sn_q(0 ,1) ., The dimension n-1 is sometimes
omitted.

F® - R® U{w} = the one point compactification of R®. Thus R"
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is a topological space, homeomorphic to s® . A metric in R® will
be defined in Section 12.
ﬁq = the two-point compactification R/l U{~® , @} of Rq.

Let AcR®. X is the closure of A. 3A is the boundary of A .
int A 1is the interior of A, CA 1is the complement of A . All these
are taken with respect to E®. This Justifies the notation RO,

By a ball neighborhood of a point xoeaﬁn we mean a ball
Bn(xo, r) if x0£ ® and a set QBn(r) if x = @.

The set-theoretical difference of two sets A and B is de-
noted by ANB={x1xeA, x£B}.

Since points of R® are treated as vectors, we use the group-
theoretic notation A+B=f{a+blash,beB} if A and B are sub-
sets of R". Similarly, we define the sets A-B, x+A, rTA, etc.,
where xs&R® and rsR/‘. d(A, P) is the distance between A and
B, and d(A) is the diameter of 4.

Let a,bsR', a<b. Then (a,bl is the closed interval
{t1a<t<b}, If a<b, (a,b) is the open interval <{t!a<t<b}.
A closed (open) n-interval is the cartesian product of n closed
(open) intervals of Rq.

A neighborhood of a point or a set is an open set containing it.
A domain is a connected non-empty set.

The notation f :D—» D' includes the assumption that D and
D' are domains in K®. If T is a curve family in D, then r
denotes always its image under f.

Let U be an open set in R". A mapring f :U~—>R" is differ-

entiable at xeU if there is a linear mapping £'(x) : R® > &r",

called the derivative of f at x, such that
f(x+h) = f(x)+f'(x)h +1ht e(x, h)

where &(x,h)-»0 as h—>0. The jacobian of f at x 1is denoted
by J(x, f).

If A=R®, mp(A) is the Lebesgue outer measure of A . mh(A)



a<s<t<b implies f(s)<f(t).
iff = if and only if.
qc = quasiconformal.
qclly = quasiconformally.
qcty = quasiconformality.
M = the end of a proof.
W#e give a list for other notations, which will be defined in the
text and used throughout the rest of the notes.
2(a) 1length of a path 1
taul locus of a path 1
Sq length function 2
L(x, f) 11
M) 16
Mr(r-), M(T ) modulus 16
F'2 > 0 17
A(E,F,G) 21
AO(E W F,G) 23
Mi(f’) modulus on a manifold 28
bn constant 28
ch constant 31
f; rath family associated to a ring 33
R(C, 5 Cq) = C(C UC,) 33
»,(r) 34
q(a , b) srtherical distance 37
xp(r) 38
Aplr, 8) 39
KI(f) ,Ko(f) , K(f) dilatations 41-42
HI(A) ,HO(A), H(A) dilatations 43
¢(f,b), C(f,A) cluster sets 52

ker B

3 kernel of a sequence of sets 73
j>®
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I(x,f,r), Mx,f,r) 78

H(x , f) 1linear dilatation 78

pé(x) volume derivative 83

aif(x) partial derivative 86

KI(D, DY), KO(D, D'y, KI(D) . KO(D) coefficients of gecty 127
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CHAFTER 1. THE NMODULUS OF A CURVE FAMILY

In this chapter we present the theory of moduli of curve fami-
lies. This concept will be our main tool when studying the proper-
ties of gc¢ mappings. In the two-dimensional case it can often be
replaced by the conformal mapping technique. The charter consists

of sections 1-12.

1. FPaths

1.1. Definitions. A path in R® is a continuous mapring .

A—>R" where A is an interval in Rq. The path is said to be
closed or open according as A 1s closed or open. The locus lat of
a path « ¢ A > &® is the roint set aAcEP . & subrath of a path
w:A—>E" is a restriction of & to a subinterval of A .

Let «:fa,bl »R" be a closed rath, and let a=t <t ;<...

<t,=b be a subdivision of la , b} . The supremum of the sums
k
> talt) = alty 4!
i=1

over all subdivisions is called the length of a and denoted by
I(a) . Thus O0< (&)< @, and f(a)=0 iff o« is constant. If
ﬁ(a)< @, & 1is rectifiable, otherwise non-rectifiable. Also a rprath
in R® such that wms lal is non-rectifiable, except for the con-
stant rath a(t)= o, for which we define {(a)=0. We remark that
the constant raths will never occur when dealing with gqc mappings, and
they are included in the discussion just for the sake of complete-

ness.
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Otherwise stated, a 1is rectifiable 1iff it is of bounded vari-
ation, and e(a) is the total variation of a« . Since the total va-
riation is an additive function of an interval, the following result

is obvious:

1.2, THEOREM, Let «: la,bl -»R" be a rectifiable path, and
let a=t <...<t, =b be a subdivision of fa,bl. Then every

restriction ol {ti-ﬂ ,ti] is rectifiable, and

Kk
{(a) =i§‘=_“1 latft; 4, ;1) . @

Suppose that a: [a, bl —R® is a rectifiable rath. For each
te la,bl we denote fl(alfa,tl) by sa(t) or only by s(t) . The

function St (a,'b]—>I{] is called the length function of a.

1.%. THEOREM, The length function s : {a, b}->1{l of a recti-
fiable path a: fa, bl - R® has the following properties:
(1) agt,<t,<b  implies L(atift, , t,51) =s(t,) -s(t,) 2
Ia(tz)-a(tqy.
(2) s 1is increasing.
(3) s 1is continuous.
(#) s 1is absolutely continuous iff a is absolutely continu-
ous.
(5) s'(t) and a'(t) exist a.e. and s'(t) =1a'(t)1 a.e.
b
() o) > fs'(t)dt = | ta'(t)1dt ,
a a

where the equality holds iff s (or a) is absolutely continuous.

Proof. (1) follows directly from 1.2 and the definitions. (2)
follows from (1). To prove (%), let t,8 fa,bl. Since s 1is increas-

ing, it has the left limit h and the right limit h' at to. (1f
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t, is a or b, only one limit is defined.) We must prove that
h = s(to) =h', Suppose, for example, that h< s(to) . Set r= s(to) -
h, and choose t, & (a, to) . By continuity, there is gqe (t’l . to)

such that la(t) -a(t )1<r/3 for q<t<t . Since M(atft,,t 1)

s(t,) -s(t,) >r, there is a subdivision ty=a <a <...<a =t/

such that

k
J‘Z;—’l Ia(aj) '“(aj-’l)' > 2r/%* .

We may assume that 8,_4>4q . Then la(ak) —a(ak_,')l <r/3 which im-
plies k-1
1 ) - . t > .
3’; a(as) -olas 4) x/3
Set a4 = t, . We then have {(al ft,, t2]) >r/3% ., Similarly, we can
find tze (t5,t,) such that {(at (t,, tz1)>r/3. By induction, we

obtain a sequence t,l<t < ...<tJ.< ...<t0 such that

2
e(al{tj » 45441)>1/3 . By 1.2, we obtain

-1
lattty , £ 1) > Lattt, , tp}) = é" ICan Cts tjml) > (p-Nr/3

for all p. Since o is rectifiable, this leads to a contradiction
and proves {(3).

To prove (4), we first remark that the '"only if'" rpart follows
immediately from the inequality in (1). Next assume that & 1is abso-

lutely continuous. For each &€>0 we can find 6>0 such that

k
i;’ la(bi) —a(ai)l < g

whenever Ai = [ai y bi] are non-overlapping subintervals of (fa, bl,
satisfying the condition §_ m(A;) <6 . Consider such a family 4, ,
<.+ 58, . Since s(bi) —s(ai) = @(alAi) , We can subdivide each A;
into intervals Aij = {aij R bij} such that ? la(bij) —a(aij)l >

s(bi) - s(ai) -&/k . Thus

i: 1s(by) - s(ay)! <i}::_j Ia(bij) —a(aij)l +€& < 2g ,
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which proves the absolute continuity of s.

To prove (5), we first remark that since s 1s increasing and
since & 1is of bounded variation, the derivatives s'(t) and a'(t)
exist a.e. Moreover, the inequality of (1) implies that la'(t)1<
s'(t) whenever both derivatives exist. Let A be the set of all
such that s'(t) and a'(t) exist and 1a'(t)1<s'(t) . Let A, be
the set of all ts A such that

=s(p) > la(q) a(p)l
a-p

whenever a<p<t<q<b and 0<q-p<7/k. Since A=UA , it

suffices to prove that m(A )=0 for a fixed k. Moreover, we may

»
assume that the interval ({a , b} is bounded.

Let &>0. There is a subdivision a=%t <t <...<tp= such
that ((a) < ¥ ta(t) ~a(ty 1)t +&/k and such that ty-t, <7k
for all 1<j<h. Set Ag=1lty 4,t,1. If AsNA #@, then
s(tj) - s(tj_,‘) > la(tj) - a(tj_,l)t +m(AJ.)/k . Hence

h
m(A) < Aj%ﬁ—‘kam(%) <k 521 (s(t5) -5t 4) - 1a(t;) —alty 1)
=k (W) - J}: la(t ) - a(ta D) e
Thus m(Ak) =0, and (5) is proved.
Finally, since {(a)=s(b) =s(b)-s(a), (6) is a consequence of

(5), (#), and a general theorem in real analysis. M

2. Change of parameter. Arcs.

2.1. Definition. A prath a: ta,bl - R is obtained from a path

B: lc,d) N by an increasing (decreasing) change of parameter if

there exists an increasing (decreasing) continuous mapping h of

{a, b} onto € ,dl such that a=Be¢h. If -@m<as<b< o, the
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inverse of a path a ! fa, bl —>F" is the path &« : Ca, bl —>§n, de-

fined by a(t)=ala+b-t).
We omit the easy proof of the following result:

2.2. THEOREM, If a 1is obtained from B8 by a change of para-
meter, then {(a)={(B). In particular, a is rectifiable iff 8

is rectifiable. M
2.3. COROLLARY., (&) = la). m

2.4, THEOREM, If a«: [a, bl - R® is a rectifiable path, there
exists a unique path a®: 10 s - E" with the following properties:

(1) o« is obtained from a® by an increasing change of para-
meter.

(2) Wa®1{0,t1)=t for 0<t<c. In other words, sao(t) =t .

Moreover, c=0(a), and a=a’e Sq *

° is a path which satisfies the con-

Proof. Assume first that a
ditions (1) and (2). Then a=a’oh where h: fa,bd) = {0,c] is in-
creasing. 1f a<t<b, 2.2 implies A(atf0, tl) = W(a®110, h(t)1) =
h(t) . Thus h= Sg * This proves the uniqueness of al .

On the other hand, if sa(t,l) = sa(tZ) , then alflt,, t2] is
constant. Hence there exists a well-defined mapping a®: 0, Wa)l
— R® such that a=a°osa. It is easy to see that a® is continu-

ous and satisfies (2).M

2.5. Definition. The path a°: (0, {(a)] - R™ is the normal re-
presentation of a. It is also called the parametrization of « by

means of its arc length.



2.6. THEQOREM, If a 1is obtained from a rectifiable closed path

B by a change of parameter, then al = BO or o= BO according as

the change is increasing or decreasing.

Froof, Let a=Bc¢h, and assume first that h is increasing.

o R . .
Then a=8"o¢s_oh where sBah is increasing. Since 8° 1is a nor-

B

mal representation, the uniqueness rart of 2.4 implies a = BO . Next
assume that h 1is decreasing. Set g(t)={(a)-t. Then a=

310 g e sB °eh where gosBoh is increasing. Since

E(8%110, £1) = (81T -t , €(a)1) = &,

the uniqueness of «® again implies a°=8° .M

2.7. Definition. A set JCR® is a closed (open) arc if it is

homeomorphic to a closed (open) interval [(a,b] ((a,b)) where

a<b.

Suprose that J is a closed arc and that o : fa, bl -»J and
B:{c,d-»J are homeomorphisms. Then h = B_q oo fa,bl - fc,dl
is a homeomorphism and hence strictly monotone, Since a=8<h, 2.2
implies €(a) = {(B) . Hence the length of J, {(J)= fla) , is well-
defined. If ((J)< w, J 1is called rectifiable. Theorem 2.6 gives

as a corollary:

2.8. THBOREM. Let a:f(a,bl ->»J and 8:Ic,dl =>J Dbe homeo-
morphisms onto a closed rectifiable arc. Then either a® = BO or

G.O=BO. &

One can similarly treat Jordan curves, that is, homeomorphic

images of the unit circle. However, they are not needed in these

notes. In fact, we will not use arcs either, but they are included
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=3

here in order that the reader can see the connection between the con-

cepts of these notes and those arrearing in the literature.

3. Open paths

%.1. Definition. A path a: A > is locally rectifiable if

each closed subpath of & is rectifiable. We then denote {(a) =
sup 0(B) over all closed subpaths B8 of a. If {(a)< @, a is

rectifiable.

Clearly, the concerts rectifiable and locally rectifiable co-
incide for closed paths. Moreover, for a closed prath a, the two
definitions of £#(w) are equivalent.

For example, the rath «: (-1, 1) —)RZ , defined by a(t) =
(t , t sin (1/t)) , is not locally rectifiable. Its subpath a1(0,1)

is locally rectifiable but not rectifiable. If lal contains both

finite points and @, & 1is not locally rectifiable.

%,2. THEOREM. If a:(a,b) »R® is a rectifiable open path,
then it has a unique extension to a closed path o : fa, bl g%,

Moreover, £€(a)= 0(a*) .

Troof. We must show that the limits of «(t) exist as t—>a

and t -»b. Surrose that, for examrle, 1lim w(t) does not exist. We
t>b
can then find a positive number r and a sequence t,<u, <t2<u2<

e <t ,.<u

J 3

Hence

<...<b such that Ioc(uj)—u(tj)|>r for all jsN.

k
1(at [, , uk]) > ljZ=/‘|cun(ua.) —a(tj)l > kr

for every k, which contradicts the rectifiability of a . The last
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assertion is proved in the same way as the continuity of the length

function in 1.3. m

%2,%, THEOREM. Let a:(a,b) —>R" be an open rath such that «
is absolutely continuous on every closed subinterval of (a,b).

Then a 1is locally rectifiable and
b
to) = [1ar(o)ras.

a

Froof. Apply 1.3.(6) to closed subintervals of (a,b) . M

3.4. Definition., An arc J 1is locally rectifiable if each closed

subarc of J is rectifiable. J is rectifiable if {(J) =sup €(J*)
<@, where the supremum is taken over all closed subarcs J'cd.
Alternatively, J is (locally) rectifiable if its homeomorphic

parametrization o :A-»J is a (locally) rectifiable path.

4, Line integrals

Throughout this section we assume that ACRY is a Borel set and
that o: A58 is a non-negative Borel function.

For each rectifiable closed path a: fa,bl - A we define the

line integral of g Over a as follows:

()
fgds = fg(ao(t)) dt ,
a 0

where a°® is the normal rerresentation of a, defined in 2.5. The
integral on the right exists, because e ca’ is a non-negative Borel
function. Its value may be +m® . We also use the notation

jgds = fQ(x) 1dxt1 .

[« % [« %
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4.1, THUOREM. If a: fa,bl - A is absolutely continuous, then

J\st
+%

i

b
fe(a(t)) tat(t)t dt .

a

Froof. Since absolute continuity implies bounded variation, «

is rectifiable. Write a=0aCes. Since s'(t)=1a'(t)l a.e. by 1.3,

we obtain

b b
Jetaten 1ar(e)ras = [ea®seM sty as .
a a

Since s 1is absolutely continuous by 1.3, the assertion follows from
a general theorem in real analysis concerning the change of variable

in integrals. M

We also define the line integral of ¢ over a rectifiable closed

arc JcA. If a:fa,bl >J is a homeomorrhism, we set
feds=fgds.
J &%

It follows from 2.8 that the integral is independent of the choice
of a.

If a 1is a locally rectifiable rath such that lalc A, we set
fg ds = sup f@ ds
o 8

over all closed subpaths B8 of a. If o 1is a rectifiable open

Jﬂgds = J}gds,

@« o

path, we also have

where a*

is the closed extension of a, given by %.2. The integral
on the right has an obvious meaning even if p is not defined at the
end points. If J 1is an open locally rectifiable arc in A, we de-

fine



f@ds:supfgds
J J!

over all closed subarcs J'cC J.

4.,2. Summary. The line integral Jﬁgds is defined (rossibly
infinite) if o :A-a-éq is a non—negat?ve Porel function and if §
is any of the following quantities:

(1) A rectifiable closed tath in 4.

(2) A locally rectifiable open path in A .

(3) A rectifiable closed arc in A .

(4) A locally rectifiable open arc in A .

It would also be easy to define the line integral over a recti-
fiable Jordan curve, Noreover, in the case of arcs and Jordan curves,
the definition could also be based on the Hausdorff linear measure
without using the parametric rerresentation. In this way the line in-
tegral can alsobe defined for arcs which are not locally rectifiable.

(Its value for such arcs would ‘'‘usually'' be @®).

4.3, Definition. @ 1is a curve if it is either a path or an

arc.

we have thus defined the line integral of a non-negative PRorel
function over every locally rectifiable curve.

The concept subcurve is clear.

4.4. Remark. In the theory of qc marpings one can make use of
either paths or arcs. One reason for this is that the locus of a
path is arcwise connected (see Rerark 7.11). While most authors have
used arcs, we in these notes prefer taths, because they are sometimes
technically simpler to deal with. Moreover, arc families cannot be

used in the theory of the so-called quasiregular rayyrings which are
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not necessarily homeomorgphisms. These, however, are not considered in
these notes., However, the definition of the modulus and some basic

results are formulated for curves.

5. Transformation of line integrals

Surpose that U 1is an oren set in Rn . Let f:l]—>fﬁl be con-~-
tinuous, and let o« be a path in U. Then fea 1is a path in R® .
If it is locally rectifiable and if o Ifo(:!—;éq is a non-nega-
tive Borel function, the line integral of g over fowu 1is defined.
In this section we show how this integral can be estimated by means
of a line integral over a . For this purpose we introduce the func-

tion
1f(x+h) = £(x)1

L(x, f) = lim sup T s

h>0

defined for xsU. Clearly O<L(x,f)< ®. If f is differenti-

able at x, then L(x,f)=1ft(x)1.

5.1. THEOREM. The function xr»L(x, f) 1is a Borel function

in U.

Froof. Let as R/‘ . We must show that E={xsU11(x,f)<a}
is a Borel set. We denote by Ej the set of all xs&U such that
1f(x+h) - f(x)1/1h1 <a-1/j whenever O0< 1h1<1/j and x+hsU.
Since f is continuous, every E. 1is closed in U . Since E::UEJ,

£ 1is a Borel set. M

5.2. Definition. Let o« be a rectifiable closed path in R".

A mapping f: tal = B®  is absolutely continuous on « if foa®

is absolutely continuous on [0, ¢(a)].
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For example, suppose that f: U->R" is locally lipschitzian,
that is, for every compact set FcU there is a constant Q’F such
that 1f(x) - f(y)! _<_Q,F|x -yt for x,yeF®. Then f 1is absolutely
continuous on every rectifiable closed path « in U, Dbecause

foa® satisfies the Lipschitz condition
1£(a(u) - £°GNt < Q1a®u) -a®(t)t < QIu-t1,

where Q:Q,m‘ . In particular, a C/‘—mapping f:U—>R" is absolute-

ly continuous on every rectifiable closed path in U.

5.%. THEOREM. Suppose that U 1is an open set in R® and that
f:U—>R" is continuous. Suppose also that a:A—=U 1is a locally
rectifiable path such that f 1is absolutely continuous on every
closed subpath of a. Then f~a 1is locally rectifiable. If

@ 1foal —>1-:<z/l is a non-negative Borel function, then

[eas < [otsGed 1ix , £) 1axt .

foa e

Eroof. We first assume that A is a closed interval f[a,bl.

o

Since f oa is absolutely continuous, it is rectifiable. By 2.2,

the path foa=7f calo Sy is rectifiable. Ty 5.1, both integrals
are defined. Set f(a)=p, L(foa)= KT 0a®)=q, and let

s: {0,71- {0,ql be the length function of £ oa®., Then s 1is ab-
solutely continuous by 1.3. Setting 8= (foa)®, we obtain by 2.6

Bos=(faa®)les=foa’. Using the transformation formula for

Lebesgue integrals we obtain

q
[eas = [oaty as - few(s(u)))s»(u) au = fe<f<a°<u)>)s~<u) au .
foa O 0 0

By 1.3, s'(u) = 1(foa®)'(u)! a.e. Consider u such that
(foa®)*(u) and a°'(u) exist. Since a°® is a normal rerresenta-

tion, we can find a sequence (rj) such that T — 0 and
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ao(u+rj) £a’(u) . We then have

1 0 0) " (u) If(ao(uu‘j ) - £(a®u)1 Iao(u+rj) -afCu)t

lim S 5
j>o® la (u+rj) -« (u)t Irjl

#

< L(a’(u) , £) 1 (u)1 .

On the other hand, 1.3 implies that 1a®*(u)1 =1 a.e. Combining the

above results we obtain s‘(u)gL(ao(u) , f) a.e. Hence

f@ ds < fg(f(ao(u))) L(a®(u) , £) du = fg(f(x)) L(x, £) 1dx1 .
fea 0 fe

The theorem is thus proved in the case where a 1is a closed path. If
a 1is open, the inequality holds for every closed subpath of « and

hence for the whole o . M

5.4, COROLLARY, If f: U—>R" is a C/‘-mapping and if a:A =T
is locally rectifiable, then f oa is locally rectifiable. If

o 1foal —)15{/‘ is a non-negative Rorel function, then

Jeas < Jotzeey vt 1axt . m

fo o
5.5. Definition. Let D and D' be domains in R™ . A homeo-
morphism f :D-» D' is conformal if ftscll and if tf'(x)h! =
1f'(x)11ht for every xs&D and heRY. If D and D' are domains
in ﬁn , @ homeomorphism f :D—> D' 1is conformal if its restriction
to DN{w, f"q(m)} is conformal.
Alternatively, a C/‘—homeomorphism f 1is conformal iff tf'(x)1®

=1J(x, f)1 for all xsD.

It is well known that a 2-dimensional diffeomorrhism with rosi-
tive jacobian is conformal iff it is comrlex analytic. As mentioned

in the introduction, for n>3 every conformal marring is a Mdbius
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transformation., By a Mobius transformation we mean a mapping

f:R* > R" which is composed of a finite number of the following ele-
mentary transformations:

(1) Translation: f(x)=x+a.

(2) Stretching: f(x)=rx, ©>0.

(3) Orthogonal marping: f is linear and 1f(x)!1=1x1 for all
x & R™.

2
(4) Inversion in a sphere 8S(a,r): f(x) = a-+£—£§:§l.

Ix-at
In fact, every Mobius transformation can be expressed as a composite
mapping of inversions. A MObius transformation can always be written
in one of the following forms: f(x)=rTx+a or f(x)=I(rTx+a)
where r>0, asR" , T 1is an orthogonal marping and I 1is an inver-
sion. The first case occurs iff f(w)=w, and f 1is then called a

similarity marping. It is easy to see that every elementary transform-

ation, and hence every Mobius transformation., is conformal. For the
converse, see Remark 5.8.

The following result is proved exactly as Theorem 5.%:

5.6. THEOREN, If, in the situation of Theorem 5.%, the limit

. 1f(x+h) - £(x)1
lim
h->0 thi

exists for every xe& lat, then
f@ ds = f@(f(x)) L(x , £) 1dxt .
fea a
In particular, if f is a conformal marping, then

f,g ds = J'\Q(f(x)) 1Fr(x)1t1dx! .« M
o

foa

As an application of Theorem 5.% we prove the following intui-

tively obvious result:
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5.7. THEQREM. Let © be a non-negative PRorel function, defined
on an interval f{r,ql, and let a: fa, b] -»R® be a rectifiable
path such that p<la(t)1<q for all a<t<b. Then

ta(b)!
f Q(u) du
ta(a)t

.

J‘@(le) 1dxt >
[+ %

Froof. Define f :KY—>R

by f(x)=1x!. Then IL(x,f)=1 for
every xe&R". Since 1f(x) -f(y)1<1x-y1, f 1is absolutely conti-

nuous on o . Applying 5.3 we obtain

Jeds ng(f(x)) jdx! = f@(lx!) tdx! .
foa o o

Set B=(foa)® and c={0(foa). Then B(0)=1x(a)!l and B8(c)-=
la(b)! . We may assume that fla(a)!<ta(b)l. By 1.3, 18'(t)1=1
a.e. In order to use the formula for the change of variable, we set
Qk(u) =min (p(u) , k) . Since B is absolutely continuous, this
formula (Graves [1, p. 2211) gives

ta(db)1 c <
Qk(U) du = ng(ﬂ(t)) Br(t)dt < IQ(B(t)) at = f@ ds .
0 0

ta(a)! foa
Combining the above inequalities and letting k - @ yields the

theorem. M

5.8. Remark. Liouville {11 gfroved in 1850 that if n>3% and if
f¢:D-»D* is conformal and C3, then f 1is & restriction of a Nobi-
us transformation. It has been surrrisingly difficult to weaken the
differentiability hypotheses. For C/‘—mappings the result was proved
by Hartman [1} in 1959, For a still more general result, see Remark

13.,7.2. A simple proof for Cu—mappings has been given by Nevanlinna
1.



6. The modulus

6.1. We are now ready to define the modulus of a curve family.
Suppose that [ is a curve family in R That is, the elements
of T are curves in R™. We denote by F(T ) the set of all non-

negative Borel functions o: Rn—>f2/' such that
IQ ds 2 1
Y

for every locally rectifiable curve ye ! . For each p>1 we set
= i p
Mp( ) = inf IQ dm .

If M )=¢, we define Mp(r)z @ . This happens only if T con-
tains a constant path (which will never occur in these notes), be-
cause otherwise the constant function g(x)= ® belongs to F(T ).
Clearly O_<_Mp( FM<w.

The number Mp(r) is called the p-modulus of . The most im-
portant for our purposes is the case T =n. We shall denote Mn(r)
simrly by M([ ) and call it the modulus of [ .

In the literature, one often uses the extremal length of r.

This is simply equal to /(T ). The modulus is perhaps a more natu-

ral concept, for it has tne following measure-theoretic property:

6.2. THEOREM, Mp is an outer measure in the space of all
curves in R%. That is,

(1 w8 -0,

(2) I",‘c r2 implies Mp( r,, )SMP(FZ) .

00 @
() M () < (T

Iroof. Since the zero function belongs to F(&) , M (g)=0. if
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PRS r2 , then F(r;')DF(rZ) , whence MP(C‘)SMP( r2) . To prove (3),
we may assume that every Mp( r.l) < ®m.Ffor €>0 rick QisF(ri)
such that

J\ggdm < Mp(ri) +€/2i .

Then the function @ = (J_ eli>)"/P ‘belongs to F([), since p>g;
for all isN. Thus

u () < [ePam = 7 [efam<es T u ().

Letting € =0 yields (3). M

In view of this theorem, it is natural to use the phrase ''almost
every curve' to mean '"every curve excert for a family of modulus

zero'',

6.3. Definition. Let 1, and r2 be curve families in R®. We
say that r‘2 is minorized by [, and denote r2>q if every vys r2

has a subcurve which belongs to C‘ .
6.4. THEOREM. If [, <Tf5;, then MP(Q)EMP(F‘Z) .
Froof. Obviously F(C')c F(rz) .M

6.5. Remark, If C‘ > r‘2 , then C‘ < r‘2 . Thus 6.2.(2) is a spe-
cial case of 6.4. In fact, both results are stecial cases of Theorem
6.7 below. Roughly speaking, Mp(r) is large if there are many cur-

ves in T or if the curves of | are short.

6.6. Definition. The Curve families C' . r2 s, .. are called

n

separate if there exist disjoint Rorel sets E; in R such that if

vs [} is locally rectifiable, then Igi ds =0 where g; 1is the
Y
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characteristic function of CE; .

6.7, THEOREM. If (q , I

53 +.. are separate and if r<ri for

all i, then
(T > M ().

¥roof. For psF(l) set Qi(x) = (1- gi(x)) e(x) . Then ©; &

F( r‘i) , whence

Tu (s T [efan = T [oPan < [oPan.
E,
1
Thus }:Mp(ri)gmp(r) BN

6.8. Remark. The above definitions and results apply also to the

case n=1., However, from now on we shall always assume that n>2

unless otherwise stated. For example, Theorem 6.9 below is not true

in R".

It is clear from the definition of the modulus that the curves
which are not locally rectifiable play no role in the modulus. Hence
Mp(r) =Mp(r;)) where [ is the family of all locally rectifiable
curves in [, In other words, p-almost every curve in R° is locally
rectifiable for every rp>1. We next show that in the important case
T=n, one can even restrict oneself to rectifiable curves.

I1f T is a curve family in R, we denote by F () the fami-
ly of all non-negative PRorel functions e- Rn—>1.2" such that
IQ ds >1 for every rectifiable ys I . If the elements of T are
clYosed paths or closed arcs, then Fr(r y=F( ). In general,

MI)c Fr( .
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6.9. THEOREM. If [ is a curve family in R®,

M(T) = inf jgndm.

Proof. Denote by q the right-hand side of the equality. Since
F(M)c Fr( F), (T )>q. To prove the reverse inequality, we define
t‘

0, R" >R by o, (x)=1/1x1log1x! for Ix1>2 and o, (x)=1 for

1x1 <2 . By direct computation we obtain
fgg dm = 2nﬂn +wn__,|/(n—’|)(log 2)11""| <w.

We next show that the line integral of ©, is @ over every locally
rectifiable curve vy which is not rectifiable. If ¥y is bounded,
then Qo(x)ga)O on Iyl , and the assertion is clear. If vy is
unbounded, we choose a point x on 1yt such that Ix1>2 . From

5.7 it follows that
®

dr
J‘Qodsz r—r(—)'é—rz O .
Y 1x1

1/n

Now let o sFr( T). For €>0 we set ¢ = (Qn + engg) and show

that o eF(l ). Since p_>¢,

J‘geds ngds > 1

Y Y
for every rectifiable ye& ! . If y is non-rectifiable, then

fesds > efgods = .

Y Y
Hence QeeF(r) , and we obtain

n n n n
M(M) < Jgedm =IQ dm + € f@odm .

Since €>0 and &P () are arbitrary, this rroves M(T)<q. M

6.10. COROLLARY. If [ is the family of all rectifiable curves
in T, then M(F;):M(r). M
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6.11. COROLLARY. The family of all non-rectifiable curves in BE-
has modulus zero. In other words, almost every curve in E® is recti-

fiable. &

6.12. Remarks. The concert of the modulus of a curve family was
first published by Ahlfors and Reurling {1] in 1951. The notion was
generalized in 1957 by Fuglede [1] who also gave the measure-theoretic
interpretation 6.2. One can similarly consider families of higher-
dimensional surfaces, but they are not used in these notes.

Some authors define Mp(r') using only continuous functions
o s (), but this leads to a number M;(T') which is in general
greater than Mp(r') . However, Mg(r‘)=:mp(r') in the most imrortant
cases, for example if [ = f; is the path family associated to a
ring A (see Section “41). On the other hand, one obtains MP(T')

by using only lower semicontinuous functions ¢ (Fuglede {1, p. 173D).

.. Examples

Given a curve family [, it is usually a very difficult task to
compute MP(T') . However, it is often easy to find an upper bound
for Mp(r), for if we take any e F(l ), then Mp(r)sj\QPdm.

As an example, we prove the following inequality:

7.1. THEOREM. Suppose that the curves of a family [ 1lie in a
Borel set GcE® and that t(y)>r>0 for every locally rectifiable
vys . Then

G)
M r <E(——n
P( ) < P

r

t‘

froof. Define Q:Rn—>R by e(x)=1/r for xeG and e(x) =0

otherwise. Then @& #(l ), and the inequality follows.Mm
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It is usually much more difficult to find a significant (i.e.
positive) lower bound for Mp(r') . To do so, we must consider an
arbitrary @& F(I ) and prove that the integral of Qp is > a fixed
number. This is usually done by a method which involves Holder's in-
equality and Fubini's theorem. We illustrate this by actually comput-
ing the moduli of certain important curve families.

We first introduce a notation which will be used throughout these
notes. If E, F,G are subsets of R°, we let A(E,F,G) denote the
family of all closed paths which join E and F in G . More pre-
cisely, a path vy : [a , bl > " belongs to A(E,F,G) iff (1) one
of the end points vy(a),y(b) belongs to E and the other to F,
and (2) y(t)sG for a<t<b.

n-1

7.2. The cylinder, Let & be a Rorel set in R and let

h>0 . Set

G = {xeR"1(xq, ... X, _4)6E and O0<x <h}.
Then G 1is a cylinder with bases £ and F=E+hen and with height
h. Set I =A(B,F,G). We show that

ny_4(E)  n(q)
N T

Mp(r‘) =

Since {(y)>h for every ye [, 7.1 implies Mp(r ) <m(G)/nF.
Let p be an arbitrary function in F([ ). For each yeE let
Yy [0, h] >R® be the vertical segment Yy(t) =y+te, . Then v & r.
Assuming that p>1 we obtain by Holder's inequality

h
P p—'iJ‘ P
1< (IQ ds )* <h 9(y+ten) at .
0
Ty
Integration over ye&E yields by Fubini's theorem

h
-1 -1 -1
m,_4(E) < nP fdmn_,, fg(ywcen)P at = nP fep dm < nP j‘ppdm .
E 0 G

Since this holds for every QGF(F) , Wwe obtain mp(l‘)z
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m__4(E)/nP7T,

The proof for p=1 1is somewhat simpler. M

7.3. Remark., The above proof also shows that Mp(r) =Mp(r;))
where ro is the subfamily of [ consisting of the vertical

segments Yy .

7.4. Remark., In Example 7.2, Mp(r) is invariant under simi-
larity mappings iff p=n. This is the reason why the case p=n is
80 important in the theory of gqc mappings. Indeed, we shall show in

the next section that M(F ) is a conformal invariant.

7.5. The spherical ring. If 0<a<b< ®, the domain A=

B%(b) \ E%(a) is called a spherical ring. Let E=5(a), F=5(b)
and r; =A(E,F,A). We shall ptrove that

M(T,) = w, 4 (Log2)1™2.

n-1

Let QGF(Q) . For each unit vector ys&S$S we let

Yyl fa,b] >R" be the radial segment, defined by Yy(t) =ty . By

Holder's inequality we obtain

IA

1< (J‘st yB

b b
jg(ty)n £0-7 a¢ (ft"' at)??
Yy a a

]

b
(log 2 ya-1 Ie(ty)n 21 gt .
a

n-1

Integrating over y&S yields

(7.6) wp_q < (logg)n"l| f@nm .

Taking the infimum over all @& F(l ) we obtain

wpy g < (Log2)® () .

On the other hand, we have equality in (7.6) if we define o(x) =
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1/1x1 log (b/a) for xeA and e(x)=0 otherwise. It is easy to see
by 5.7 that this p belongs to F(T ).

n-1

7.7. Remark. Let Y be a Borel set in S and let C Dbe the

cone {xsR"1x/Ix1sY¥}. Set F={yel, 1 1y1c C} where A 1is as
above. Then the method of 7.5 yields

M) = m_4(¥) (logg y1-n,

In fact, M(T)=M(T ) where [  is the family of all radial

segments Yy , y8Y¥.

7.8, The degenerate ring. Let [ =A(E,F,G) where E-={0},

F= Sn_"(b) and G=B%(b)\{0}. Since I > Q for every stherical
ring A=B"(b)\F%a), we obtain from 6.4 and 7.5

M(T) < M) < wyq (Log 22,

Since this holds for every a>0, M(T )=0.

7.9. Paths through a point. Let x_ &R" and let [ be the fa-

mily of all non-constant paths <y such that X, & Iyt . We show that
M(FF)=0. If x, = @, this is trivial. If x_# @, we let [ be
the family of all ys& U such that ty! meets S(xO ,1/k) . Then
Mm( ri() =0 by 7.8 and 6.4. On the other hand, T = Uri( , whence by

6.2, M(IT)<5 M(q() =0 . Hence, given x & B®, almost every non-

constant path omits X, e

We next consider open raths and introduce the following nota-
tion: Given three sets E,F,G in R, we let A_(E,F,G) be the
family of all open paths vy joining E and F in G in the

following sense: Iylc G and IYINEALZ#AIyInF,

7.10. THEOREM. M(AO(E L FL,6) = N(A(E ,F ,G)) .



7.1 24

Broof. set [ =A(E,F,G) and [ =a(E,F,G). Since FO<|',
u( r;)gm(r) . To prove the reverse inequality, it suffices to show,
in view of 6.9, that F(r)CFr(ro) . Surrose that osF(l ) and
that vy 1is & rectifiable path in r;. Let Y* be the closed ex~-
tension of Yy, given in 3.2. Then 1y*! =1yl meets both E and
F. Choose t,,t, such that Y*(tﬂ) eE},Y*(tZ) s F, and assume that

ty<t,. Then B=v*{{t,,t,]e [, whence
f@ds = f@ds zjgds >1.
Y Y* B

Consequently, @& Fr( r;) .M

7.11. Remark. One can also consider the family Aa(E s F,G)
of all closed arcs which join E sand F in G . This family has the
same modulus as A(E, F,G). To yrove this, choose a parametric re-
presentation for each arc in Aa(E ,F,G). We then obtain a sub-
family [ of A(E,¥#,G). Thus M(Aa) =M(F)<u(aA) . On the other
hand, the locus of every path is arcwise connected by Topology.
Hence for each y&A there is an arc Je&A, such that Jclyl.
This implies F(Aa)CF(A) and thus M(Aa)EM(A) .

Also the family of all open arcs joining E and F in G

leads to the same modulus.

7.12. Remark. The reader can now go through sections 13-16 and
learn the basic facts about qc mappings. However, for a deerer study
we need estimates for the moduli of several types of path families.

These will be given in sections 8-12.
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8., Moduli in a conformal mapping

Suppose that A is a subset of R® and that f:A—>F" is
4
continuous. If [ is a family of paths in A, then the family [

={foylysl} is called the image of [ under f.

8.1. THEOKEM, If f£:D-—> D' is conformal (see 5.5), then
M(r') =M(l) for every path family I in D.

Iroof. By 7.9, we may assume that the paths of " and F' do
not go through o . Let g sF(r') . Define o(x) =o' (£(xDPI1L£'(x)!
for x&D and o(x)=0 for xs(CD. By 5.6,

Ieds = fe'ds > 1
Y foy

for every locally rectifiable vye . Hence psF®(l ), which implies
M(T) < fgndm = fQ'(f(x))n 13(x , £)1 am(x) = Ie'ndm < fg'ndm .
D Dt

Since this is true for every o' sF(r.) , M) <m( r') . Since f”l|

is conformal, the reverse inequality is also true. M

We found in 7.4 that mp(r) is not a conformal invariant if
p#n. We give a formula which shows what happens to Mp(r) in a
conformal linear mapping. Let k>0 and define f: R® > " by f£(x)

=kx . The image of a path family [ under f 1is denoted by k[ .
8.2. THEOREM, mp(kr) - kn‘PMp(r) .

Proof. Observing that 1f'(x)! =k, the rroof can be carried out
as in 8.1. 4
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9. Symmetrization of real functions

In this section we prove an inequality which will be needed in
10.2. Surpose that f : R"| —)RI' is a non-negative bounded measurable
function., For y>0 we set M(y)=n({x!) f(x)>y}) . Next we define

1 —)ﬁl' by

the function f£*:R
£ (x) = inf {yru(y)<2x}y for x>0,
£*(x) = £%(-x) for x<O0.
The function M : (0, ®) —)1'2"| is clearly decreasing, and M(y)=0
for large y . Hence f£*(x) 4is finite and decreasing for x>0. The

function f£* is called the symmetrization of f.

It follows from the definitions that f<g implies £*<g¥,
Moreover, if f(x) is strictly decreasing and continuous for x>0
and if f(-x)=f(x), then f*=1¢,

For example, if f is the characteristic function of a measur-
able set E, M(y)=m(E) for O<y<1 and M(y)=0 for y>1.
Hence f* is the characteristic function of the interval
(-m(E)/2 , m(E)/2) . Suppose, more generally, that £f is a simple

function. This means that f = aquq + 0.0t 2 where the functions

kYK
u, are characteristic functions of disjoint measurable sets Ai and
0<ay<ay<...<a . Set a; =8y -a; 4 with ay=a,, and denote by

fi the characteristic function of Bi = Ai U...U Ak . Then
k
(9.1) f = %;-‘qaifi .

It follows from the definitions that f* is a simple function, de-
fined by f£*(x)-a;, for m(B; 4)/2<1x!1<n(B;)/2, £*%(x) = a, for
1x1 <m(Bk)/2 , and f£*(x)=0 for Ix!>m(B4)/2. Hence

k

£* - £

X
@ .
1="Iii
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9.2. THEOREM, Let f and g be non-negative bounded measurable
functions in Rﬂ . Then
ffgdm < ff*g* dm .
RI| RI|

Froof, Suppose first that f and g are characteristic func-
tions of sets E and F, respectively. Assuming that m(E)<m(F) we

obtain
vrfgdm = m(EnF) < m(B) = ff*g* dm .

Suppose next that f and g are simple functions. Let f=E aifi
and g=2: ngj be their representations in the form (9.1). Then

J\fgdm = 3 aiBijigjdm < 5 aisjjf’i*gs.‘dm =jf’“g*dm .

Consider now the general case. Choose increasing sequences of

simple functions (fj) and (gj) such that fj —>f and gy - g,

Then

* dm ij*g*dm. M

J\fgdm = lim ff.g.dm < 1lim f"fga

j>m J7d j>® J

9.%. Remark. This section is from Hardy-Littlewood-Pélya [1,
pp. 276-279].

10, Modulus estimates

10.1. We first generalize the concept of the modulus to families
of curves which lie on submenifolds of R™. Let S be an (n-1)-di-
mensional smooth manifold in R®. In these notes, we need only the
cases where S is a sphere or a hyperplane. If [ is a curve family
on S, we again denote by F(F ) the family of all non-negative Bo-

rel functions ¢: s >R' such that jgdsz’i for every locally rec-
4
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tifiable ys& . The p-modulus of | with respect to S is defined

by
S .
M°(T) = inf Pam .
p Qan(r) ‘!e -1

By a cap of a sphere stn-—"!(xo ,T) we mean a set HNS where

H is an open half space in RP.

10.2. THEOREM. Suppose that n>2 and that K is a cap of the
sphere S:Sn""(xo ,T). Suprose also that E and F are disjoint

non-empty subsets of K. Let I'=A(E, F,K). Then
(10.3) M5(r) > b /r
n = n ?

where bn is the positive constant
n-2 1

@
(10.4) b = 2"1"‘con_2 (ft R T b, = 1/2n.
0

Proof. Assume first that n>3. Since Theorem 8.2 obviously holds
also for moduli with respect to a sprhere, the inequality (10.3) is
invariant under similarity transformations of R™. Hence we may assu-
me that S= sn"‘(en/z ,1/2) and that e &E.

Suppose that e F(l ). Let f: E® > ®® be the inversion in the

sthere Sn"l'(en , 1), that is,

2
(10.5) f(x) = en+(x—en)/lx-—enl .
Then f 1is conformal, feof is the identity, and f maps S stereo-

En—"i

graphically onto . The image of SN\K 1is either empty or a

closed ball or a closed half space in el

. Choose a point asfF,
We may assume that a=aeq a>0. Since f(S\K) 1is convex, there
is an open hemisphere G of S22 gsuch that a+tye fKk for every
yeG and t>0. We define Yyt {0, >S5 by Yy(t) = f(a+ty) .

Then Yy € T for every ysG. Thus
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®
f@ds _ [elf(atty))
- o1+ tasty!

at .

Integrating over y&G yields

Q(£(x)
“n-2/% < \é\ix-mn‘g (141%1°) RS

where H is the half space in R™™), consisting of all points & +ty

where yeG and t>0. By Holder's inequality this implies

(10.6) (‘*’n_g/?)n <

n _ n{n-2 _ 1
) = PR

n-1
H(’Hlxlé)n- dmn—"(X) )

TCIN ESY
H

n-1

Since 1£'(x)1=1/(1+ lxl2) for xsR , we have

n
_o(£(x) _ J" n I n
07 ) G DET Baca () = Jetdm, g < Jetdmy 4.
H fH S
We next estimate the second integral I in (10.6). keplacing H
by Rn"l| and using Fubini's theorem we obtain

n(n-2) 1
=t (14 lz+ue,|I2) n-1 du ,

®
Lfdmn__z(z) f 1z + (u-o:.)e,.'l

n-2 -
R"m

n-2

where R%;Z ={x1x4=x, =0y. For each z&R4,~ we estimate the

inner integral by means of Theorem 9.2. If 2z #0, the functions

_ ngn_—zg 2)__ H:‘-—T

fz(u) = Iz + (u—a)e,.'I n N gz(u) = (1+ lz+ue,|l

are both bounded, and

_ n{n-2)
n-

f:(u) = 1z + ue,! N g;(u) = gz(u) .

Hence we obtain

("I+8zl dmn__,'(z) =

n(n-2) 1
Jqf’*“g"‘dm,.| flzs n- " o

I< jdm 2(z)

n-2 -
R3

n R?
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® n-2 _ A
= @, 5 It T (1 ,42) BT gg .
0

Together with (10.,6) and (10.7) this yields
fgn dm 4 >2b .
S
Since this holds for every os F({ ), Mﬁ( ) 22bn = bn/r .
Next assume that n=2. Then K is an arc of S"(xO s T)

There is a subarc y of K such that ye U . If osF(l ), we

obtain by Schwarz's inequality

1< (feds )2 < fgzds fds < 21rrf92dm,| .
Y Y Y 8
Hence M‘;(r)z’i/an:bZ/r. m

10.8, Remark. The integral in (10.4) can be written in several

ways. For example,

® _n-2 _A 1 _A
ft 2T (4,6 2T gt - 2(n-ﬂ)j(’1 L1202y 0T gy
0 0
n-2 n/2 _n-2
= ZE:T j (sin t) E:;Td'c.
0

The estimate (10.3) is not best possible. However, in the case
where the cap K is the whole sphere, we can establish the following

sharp result:

10.9, THEOREM. Suppose that n>2 and that E and F are dis-
joint non-empty subsets of the sphere S::Sn"ﬂ(xo , ). If T =
A(E,F,8),

(10.10) M) > ¢ /r,

where
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_ a
(10.11) c, =2 b,
and b, is given in (10.4). There is equality in (10.10) if E-={a},

F={b} , where a and b are orposite points of §.

Froof. The proof can be carried out as in 10.2., However, the

Sn—2

hemisphere G can now be replaced by the whole . This gives the

factor 20,

To prove the sharpness, let S-= Sn—"(en/Z »1/2), E=X0y, F=

{en}. Define Q:S-—>Rl| by

_n-2 n-2
o(e(x) = o7 1xt 27T (14 112"
where P, is the integral of 10.8 and f 1is the stereographic pro-

jection (10.5). Using 5.7 we see that p& F(I ). Hence

f(x)" -
Mi(r) s Ien dmy_q = j -(-:‘-(_?ST% dmn__,'(x) = W2 P:l " - Cn/r :
S g1 +1x17)

The case n=2 needs a separate argument which is left to the

reader, A

10.12. THEOREM. Suppose that 0O<a<b and that E and F are
disjoint sets such that every sthere Sn_"(t) , a<t<b, meets both
E and F. If G contains the spherical ring A=B"(b)\E%(a) and
if F=A(E,F,G), then

(10.13) M(r) > ch log%,

where c = 1is given in (10.11). There is equality in (10.13) if G=A
and if B and F are the components of ILNA where L 1is a line

through the origin.

Troof. Suppose that pe F(I ). For each a<t<b let (t) =
A(BNS(t) ,Fns(t), S(t) . Then Q| S(t)s (T (t) . By 10.9 we obtain
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b b
fendm > fdt f e"am . > fmi(t)(r(t)) at > c log2.
a 8(t) a

This proves (10.13).
Next assume that G=A and that E and P are the components

of LNA. We may assume that L is the x -axis. Let ro=

n-—’l) .

ale -e, s s From the troof of Theorem 10.9 it follows that

n b
there is o s F(l ) such that

€p = Mn(ro) = J- dimn_,‘ .
Sn-1

Define Q:R“—)R/' by Q(x):go(x/lxl)/lxl for xshA and Q(x):O

otherwise., We show that QGF(r) . Let y be a rectifiable path in

T and let f(x)=x/1x1. Then foye Fo, 1£0(x)1 =1/1x! , and we

obtain by 5.4

Jeas = [e,(ry 1211 1axt > [, as
Y Y foy

v
N

Thus @& F(f ), which implies

M(T) < J’endm - fdt(f?ndmn—"l = f%& fﬁ’gd’nn—’l =cy log%. M
a S5S(t a -

Sn

10.14. Remarks. This section is based on Gehring {3, pp. 355-
359]. Theorems 10,2, 10.9 and 10.12 are also true if ENF#£Y. In

fact, Mn(r)= ® in these cases.

11. Rings

11.1. Definition. A domain AcR® is a ring if CA has exactly
two components,

If the components of CA are C, and C,, we denote
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A=R(Co »C4) . By Topology, OA has also two components, namely B
C,n Kk and B,=C, 0 K. To each ring A= R(C,,C,) we associate the
path family

M, =a(B,,By,8).

11.2. Remark. We could also consider *"rings' which are not
necessarily connected, that is, pairs F-= (C0 N C,‘) of disjoint con-
nected compact sets. To each such pair F we can associate the path
family erA(Co »Cq s E") . However, from the modulus point of view
this is not a generalization. In fact, by Topology there is a unique
component A of g(CoUC,l) such that A 1is a ring with boundary
components B_, B, such that B,CC,. Then rAC rP> rA , whence
() = M)

On the other hand, we obtain an essential generalization if we
allow Co and C, be non-connected. This generalization is called a

condenser, but we will not make use of it in these notes.

11.%, THEOREM, If A:R(Co »C,) 1is a ring with boundary compo-

nents Bo . B,‘ , then the following path families have the same modu-

lus;:

o

M= a(Cy .0y, k)
M. A(C, ,Cq B
M= a(Cy,C, »B™)
My = a(,, B, B
M- a(B,, By, B™)
Fi= A,(By s By, a) .

1 1.2, 1
Proof. Clearly T, = FA . Furthermore, FAC FA > rA and rA < rﬁ
>F, imply M(T}) -M() and M(T,)=M([}). Since the paths

through o have no influence on the modulus, M( ri ) = M( FZ) and
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M(F ) =u(F7 ). Finally, 7.10 implies M(!‘i’ )=u(F) . m

11,4, THEOREM,., If A==R(Co ,Cq) and A'==R(Cé ,C%) are rings
such that ©C;cC!, then M(rA)SM(rA,) .

Proof. Since ri cr?

R the assertion follows from 11.3. M

11.5, THEOREM, If A is a ring, then M(FA) is finite.

Froof. Let A=R(Co »C,) . We may assume that C, is bounded.
Choose a positive number h<d(C_, C,), and set E=Co+h§n. Define
e Rn—>R/l by e(x)=1/h for x&E and Q(x) =0 otherwise. Clear-
1y os&F(f,) . Hence

M) < fgndm =n(E)/h" <m. M

If A is the spherical ring a<ix!<b, M(rA)= wn_,‘(logg)q_n
by 7.5. In the rest of this section we derive estimates for the modu-

1li of more general rings.

11.6. Definition, Given r>0, we let @n(r) be the set of all
rings A=R(Co . C,‘) in R® with the following properties: (1) Co
contains the origin and a point a such that tat =1, (2) C,l con-

tains ® and a point b such that bl =r ., We denote
#,(x) = inf M(T,)

over all rings As@n(r) .
By 11.5, &en(r) is a non-negative finite number.

11.7. THEOREM. The function se_: (O, @) >R has the following

properties:



35 1.7

1) #, 1is decreasing.

(2) 1lim (}en(r) = 0.
T >m

(3) lin s (r) =@
30

() s, (r)>0 for every r>0.

Froof., (1): If r<s, then (I)n(r) c (Pn(s) , which implies
s (x) 20 () .
(2): For r>0 let A(r) Ubve the stherical ring <{x1 1<

IX+e 1 <1+ r}. Then A(r)s @n(r) , which implies
1-
#,(r) < M(Tyy) = wy_q (Qog (1+x) ™ >0

as r-» ®.,

(3): Assume that r<1 and that As@n(r) . Since the sphere
S(t) meets the boundary components of A& for r<t<1, 10.12 and
11.% imrly M(rA) = M( rﬁ )zcn log% . which proves (3%) .

(#): Since #°, is decreasing, we may assume that r>1. (The
case r<1 was in fact considered in the proof of (3).) Let A=
R(CO,Cq)s@n(r) , and let asC, and beC, be such that tal=1,
bt =r. Let o be the angle (0,a/2,b), O<a<n. We divide the
rest of the rroof in two cases according as o 1is acute or not.

Case 1. O<ag<mn/2. Since C, and C, are connected,
s(b/2,t) meets both CO and C, for r/2<t<ta-b/2'. By 10.12
and 11.3 this implies

la - b/21
r/2

Using elementary geometry it is easy to see that 1ta-b/2t attains

M( rA) > c, log

its smallest value (r2+2)/‘/2/2 for a=n/2. Consequently,

(11.8) w(h) > 322 log (1+2/1°) .

Case 2. n/2<a<mn. Now the stheres S{(a+b)/2,t) meet Co

and C, for ta-bl/2<t<la+bt/2. Again by 10.12 we obtain
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la+b!
M(rA) > c, log TZ7%T

Here la+bl/la-bl attains its smallest value (’l+2/1‘2)/'/2 for
a=7n/2, and we again obtain the inequality (11.8). Hence

c
den(r) > -—22 log (1 +2/r2) >0

From the definition of aen and from the conformal invariance

of the modulus we obtain the following estimate:

11.9. THEOREM,., Suprose that A=R(Co , C,‘) is a ring and that

a,bsCo and c,oosc,‘. Then

Ic-at
M(fy) 2 4, (p=gp) - &
11,10, THEOREM. Suprose that A:R(Co y C’l) is a ring. Then
M(rA) =0 iff C, or C, consists of a single point.

froof. If C, or C is a point, then M(FA)=0 by 7.9.

/‘
Suppose next that both Co and Cq are non-degenerate. Then we

can choose distinct points a, bsCo and c¢, dsC,l . By performing
an auxiliary Mobius transformation, we may assume that d= @ . Then

M(FA)>0 by 11.9 and 11.7.(4). M

11.11. Remarks., 1., There is an alternate way to define M( FA) .
due to Loewner {11 and Gehring {21. Let A:R(Co ' C,‘) , and consider
all C/l-functions u: A-)R/‘ such that u(x) >0 as x-#Co and

u(x) > 1 as x = C, . Then

M(rA) = inf flgradulndm
A

over all such functions wu. 4 third way to define M(FA) is to con-
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sider the family of all (n~1)-dimensional surfaces in A , separating
Co from Cq . The equivalence of these three definitions has been
proved by Gehring {4#]1. See also Ziemer {1].

2. The proof of 11.7 is from Vidisdld [1]. Stronger results have
been proved by Gehring (2] who showed that acn(r)=~M(T;(r)) where
A(r) 1is the so-called Teichmuller ring R(C 4+ Cq)y Cg= {teql
-1<t<0} and C,={te;1r<t< w}. The proof of this important and

deep result is based on the syherical symmetrization of rings. From it

one can also conclude that xn is strictly decreasing.

12. Modulus estimates in the spherical mwetric

The euclidean distance does not define a metric in R© , Since
the distance between ® and a finite rtoint is not defined. In this
section we define the so-called spherical metric in R® and derive

some modulus estimates. These will not be needed until in Section 19.

12.1. Definition. The sptherical (chordal) distance between two

points a,bseR" is the number
a(a, b) = 1£(a) - £(b)1,

where f: Rn-a-Sn(en+q/2 ,1/2) 1is the stereographic rrojection,

defined by
f(x) = en+/‘ +_)_{..:-_.?.IM7 N
Ix-e |
n+1

Since f 1is a homeomorphism, q 1is a metric in F® and defines

its usual topology. Bxplicitly, if a#f m#b,

ala,b) = ta-b1(1+1a12)" 721 L 1:12)~172 |

and

(1+ 1212172

qa(a ,m»)

Furthermore, we have always g(a,b)<la-bt and q(a,b)<1. In the
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usual way, we define the stherical distance q(A ,B) between two

sets A ,PB and the spherical diameter q(A) of a set 4.

12.2. THEOREM. Given two points a ,bsE>, there is a Mobius
transformation g:R® - F such that g(a)="b and such that g

preserves all spherical distances.

Proof, The mapping g has the form g=fohof where f 1is
the stereographic projection (f=f"/‘) and h 1is a suitable rotation

n
of the sphere S (en+’l ,1/2) . M

12.%. Definition. The mayping g of 12.2 is called a spherical
isometry.

12.4. Definition, Given O<r<1, we let ‘-Pn(r) be the set of
all rings A= R(C0 , C’l) in RB® with the following properties: (1)
a(C)2r, (2) q(C)>r. We denote

)\n(r) = inf M( FA)

over all rings As"I-’n(r) .

12.5. THEOREM. The function )‘n s (0, M -iR/‘ has the following
properties:
(1) A, is increasing.

>0

(3) 2, (x)>0 for every O<r<7.

Froof., (1): If r<s, then ‘-Pn(r):v ‘i—'n(s) , which implies
21 (T) <2 (s)
(2): This simply states that there are rings A, e.g. spherical

rings, such that the boundary components of A are non-degenerate and
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such that M( FA) is arbitrarily small,

(%3): Suppose that A= R(C, . Cq) 8% (r) . Choose a,bseC, and
c,deC, such that q(a,b)>r and q(c,d)>r. Ferforming a spher-
ical isometry of EB® we may assume that d= o . By 11.9, M( rA)z
;en(lc-al/lb-al) . We next estimate Ic-at!/Ib-al . Assuming that

1al <1b! we obtain

r<ala,b) = 1a-b1(1+1212) 721 4 1112)7172 < 1a_b1/(1+ 1a12)
and
r<aqle,® = (1+1c12) V2 < a/1cr,
Hence
lc~al 1+rilal
< u(r)
b-at = r‘?(’l + lalz)_ ’
where
u(r) = max 1+t < .

O<t<w (1 +t%)
Since se is increasing, M( FA) zdén(u(r)) . Hence 1n(r)2 é?n(u(r))

>0. M
We next consider a more general rroblem.

12,6, Definition. Given O<r<1 and 0<t<1, we let LPn(r , t)
be the set of all rings A=R(Co »Cq) in E® with the following pro-
perties: (1) a(Cy)>r, (2) a(Cy)2r, (3) a(C,,C )<t . We denote

A (r, ) = inf M(T,)

over all rings AsLPn(r ,t) .
Thus kn(r , 1) 1is equal to the number Rn(r) , defined in 12.4.

12.7. THEOREM. The function *_:(0,11X (0,11 —>R' has the
following properties:

1) )\n(r ,t) is increasing in r.
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(2) )n(r ,t) is decreasing in t.
(3) X (r,t) 22 (r)>0 for every r and t.

(4) 1lim )n(r ,t)= o for every r.
ts» 0

Proof, (1) and (2) are obvious. (3) follows from (2) and 12.5.
To prove (4), suppose that t<r/4 and that A=R(Co , C’l) & L}Jn(r s t).
Fick aeC, and ce&C, such that q(a, c)<t. Next choose bsC,
and dsC, such that q(a ,b)>r/2 and q(c,d)>r/2. Ferforming
an auxiliary srherical isometry, we may assume that d= @ . Hence
u(T,) > (1c-al/1b-at) . Since 1/1ct>q(c, ®)>r/2 and since

1/1atl > q(a, @) >q(c, @) -qgla,c)>r/2~-t>r/4, we obtain
te-at = qla, c)(1+1212)172(141c12)172 < t(1 4 16/2%) .
On the other hand, Ib -'al >q(a,b)>r/2, whence
M(T) > (31 +16/0°) .

Hence }n(r , t) zaen(z—rti(’l+’l6/r2)) for t<r/4 . Since aen(s)-a ® as
s —>» 0, this proves (4). M



CHAFTER 2. QUASICONFORMAL MAPFINGS

In this chapter we give the definition of g¢gc warpings and es-
tablish various results concerning the boundary behavior, distortion
and convergence of gc maprings. The only tools we need are the re-
sults of Chapter 1 and some topological rroperties of R™. The

chapter consists of sections 13-22.

13, The dilatations of a homeomorphism

Surrose that f :D—> D' is a homeomorphism, As mentioned in
"Notations'", this includes the assumption that D and D' are do-
mains in F". Consider a path family [ in D and its image family
r'={folesr}. If f is conformal, M(r')=M(r) by 8.1.
Hence it seems natural to introduce the quantities

Kq(f) = M)
olf) supM(r)

KI(f) sup W)

b b

where the suprema are taken over all path families [ in D such
that M(T) and M(T') are not simultaneously O or . It is
clear that there are such families, e.g. those associated to a ring
with non-degenerate boundary components. If f is conformal, KI(f)
=:Ko(f) =1 . We can regard these numbers as measures for how much f
differs from a conformal mapping.

Since M(T’)::M(f")=<n whenever one (and hence the other) of
the families I and I contains a constant path, the constant

paths have no influence on KI(f) and Ko(f) . In order to avoid



13.1 42

technical difficulties, we shall therefore assume from now on that

every path family contains only non-constant paths.

13.1, Definition, If f:D-—» D' is a homeomorphism, KI(f) is

the inner dilatation and Ko(f) is the outer dilatation of f . The

maximal dilatation of f is X(f) = max (KI(f) ,Ko(f» . If RK(£)<

K< w, f 1is K-quasiconformal. Equivalently, f is K-quasiconformal

iff
M(M)/K < (') < ku(l)

for every path family T in D. f is guasiconformal (abbreviated

qc) if K(f)< o .

It follows from the definitions that the dilatations are positive
numbers, possibly infinite. We shall show in 34.5 that they are always
>1. For the moment we can only say that either KI(f)z’l or Ko(f)
>1. Hence K(f)>1.

From the definition of the dilatations we readily obtain the

following relations:

13.2. THEOREM. (1) K (£7") = K, (f) .
(2) Ky(£7h) = K (£) .

(3) K(£7) = K(£) .

(4) K (fog) < K (£)K;(g) .

(5) Ko(feg) < Ko(f) Kq(e) .«

(6) EK(fog) < K(f)K(g). &

AN

IN

1%,%. COROLLARY, If f is K-qc, then £~ is K-qc. &

1%.4., COROLLARY, If h=fog, where f is Kq—qc and g 1is
Kz—qc, then h is KqKz—qc. M
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1%3.5, COROLLARY, If h::gqof<>g2, where g4 and g, are con-

formal, then h and f have the sawe dilatations. M

1%.6, Definition. If D can be mapped qclly onto D', D is

quasiconformally equivalent to D'.

By 13.3 and 13,4, the above relation is really an equivalence

relation.

1%.7. Remarks. 1. There are several equivalent ways to define
the dilatations of a homeomorrhism. We shall give two other defini-
tions in 34 .4 and %6.1.

2. Gehring {3%] and Refetnjak {2} have proved the following strong
form of Liouville's theorem 5.8: If n>3? and if f:D-»D' is 1-qc,
then f 1is a restriction of a Mdbius transformation. We shall not
prove this important result in these notes, Mostow [1} has given a
rather elementary proof for the fact that a 1-qc mapping of F® onto

B is a M6bius transforration. This result is also true for n=2,

14, The dilatations of a linear mapping

14.1, Definition. Let A :R®—>R" be a linear bijection. The

numbers
n
tdet A 1A1 1A
B = = 0 BoW) = Taeear B - g

are called the inner, outer, and linear dilatation of A, respecti-

vely. FPor notation, see p., viii.

In Section 15 we show that HI(A)==KI(A) and HO(A)==KO(A),
which justifies the terminology.
Obviously, all three dilatations are > 1. They have the follow-
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ing geometric interpretation! The image of the unit ball B  under
A is an ellipsoid E(A). Let B (A) and B,(A) be the inscribed

and circumscribed balls of E(A), respectively. Then

n(E(A n(Bo(a)
LW -SEty 0 R - Sy

and H(A) 1is the ratio of the greatest and the smallest semiaxis of
E(A) .

Let a,>a,>...>a  be the semi-axes of E(A). More rrecise-
ly, the numbers a, are positive square roots of the rroper values

of A*A where £ is the adjoint of A . Then a,;=14al, a =¢(4),

Idet Al = VEREL S and we can also write
n-1
a a a a
1°**"n-1 1 1
(14.2) HI(A) = _a—n-'-T—" HO(A) = 5'2_..—.8-;’ H(4) = 'a';-
n

If n=2, then HI(A)==HO(A)=:H(A) . In the general case we obtain

the following relations:

Hi(A) < Hy(W)P ', Hy() < B (AP, HW® = H(ADBLA) ,
(14.3)
H(A) < min (H(A) , Hy(A) < H(A)™? < max (H (A) , Hy(A) < H(A)® .

It is easy to see that these inequalities are best possible. For

example, if a,=...=4a >a_, then H. (A)=H (A)n"/‘ r=H(A)n"/l .
1 n-1 n I 0

The following relations are easy consequences of the definitions:

Hi(AT) = By(A) , Ho(a™) = m(8), BT = H(A),
(14.4)
H;(AB) < H{(8)H{(B) , Hy(AB) < H (A)Hy(B) , H(AB) < H(A)H(B) .

If A 1is given by its matrix, it is usually an elaborate task
to compute the dilatations of A . We show, however, that in the case

n=2 this can be done by a relatively simple formula.

2

We use complex notations in R and write z=x+1iy. Let

2 2

A :R° > R° be a linear bijection. Then Az = ax+by+ i(cx +dy),
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where a,b,c,d are real numbers such that ad-bc#0. Set H=
HI(A) =HO(A) =H(A) ., The rroblem is to compute H in terms of a,b,
c,d.

ie

Let z=e"® be a unit vector. Then 24z = pelw-+qe_ where

p=a+d+i(c-b), g=a-d+i(c+b). Consequently, 2tAz! =

lp-+qe"2i¢l . From this we see that 21al = 1pl +1g!l and 2 £(A) =
Hp!l - 1gt , whence
_ Ipt +1ql
Hpt - 1gMl

This formula can be used for the calculation of H. From it we also

easily obtain

2 2 2 2
1 a“ +b"+c”+d

14, H =

(14.5) *H lad - be !

Thus H is the greater root of this equation (the other root is 1/H).
For higher dimensions, we only give a pair of inequalities which

can be used in numerical estimates., Surpose that A:RP>R" is a

linear bijection and that (aij) is its matrix, i.e., Aei=.Z: ajiej‘

)
If 1x1<1, then

taxt? = T agyx)? < TTCID @500 < e
J 1 Jd i 1,d

12

Hence,

(ZaZ)n/Z
1,6 H.(A) <« —4d -,
( ) ol#) < tdet Al

In the other direction, we have

2 2 2
S afy = > The 17 < n1A17,

i,J 1
whence
(Za%‘ )D/Z
1 . —D/Z l!!
(14.7) Hoa) 2 n Tdet A1
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15, Quasiconformal diffeomorthisms

Suppose that we are given a homeomorphism f : D-»D'. How can we
determine the dilatations KI(f) and Ko(f)? In particular, how can
we find out whether f 1is qc or not? This yproblem is usually im-
Tossible to solve directly using the definition of the dilatations,
since we ought to compute the moduli of all path families in D and
D'. In this section we show how the dilatations of a diffeomorphism
can be calculated in terms of its derivative., For more general mapp-
ings, this problem is considered in Section 34.

By a diffeomorphism we mean a homeomorphism f :D-» D', where

D and D' are domains in Rn, such that both f and f'q belong
to Cq. Equivalently, a diffeomorrhism is a Cq—homeomorphism whose
jacobian J(x,f) does not vanish. If f is a diffeomorphism,

£ (x) 18
1J(x, £)1

1J3(x, £)1

H. (f! =
olf1 () e ()"

. EE(x) -

15.1. THEOREM. Suppose that f :D-»D' 1is a diffeomorphism.
Then

K (f) = )SCZI% Hi(£ (x) , Ky (f) = ;3{1;% Ho(f' (x)

Yroof. It suffices to prove the second equation, because the
first one follows from it if we consider the inverse maprping f_q. We
first show that Ko(f) < sup Ho(f'(x)) . We may assume that
sup Ho(f'(x)) =K<, We have to prove that M(F)SKM(F') for an
arbitrary path family [ in D. The proof is closely similar to the
troof for the conformal invariance 8,1 of the modulus. In fact, 8.1
is a special case of 15.1.

Let ©'sF(F'). Define @:R®—=>R' by o(x)=g'(£(x) 1£'(x)!
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for xeD and @(x) =0 otherwise. We show that oeF(T ). Suppose

that y is a locally rectifiable path in [ . Using 5.4 we obtain

f@dsz fQ'dsz’l.

Y foy
Hence p e ®(F ), which implies

u(M) < [ePam = o (£G)™ 127 (01" am(x)
D

In

Kf@'(f(x))n 13(x, £)1dm(x) = K fe'ndm < Kfe'ndm ‘
D D!

Since this holds for every o's F( r') , we obtain M(F)SKM(F') .
It remains to prove that Ho(f'(x)) < Ko(f) for every xesD. We

prove a more general result which will be needed in Section 32.

15.2. THEOREM. Let f :D-» D' be a homeomorphism., If f 1is

differentiable at a point aeD and if Ko(f) < @, then

£ (a)1® < Ky(£) 13(a, )1 .

Yroof, By performing a preliminary similarity transformation, we
may assume that a=0=f(a) and that f£'(0) is given by f'(O)eiz

a;e; where a,>... 2a,20. We have to show that

(15.3) &) < Ky(f)a,...a .

Since (15.3) is trivial if a,=0, we may assume a,;>0. Let
0<e<a,/2 and let Q={xsR"10<x,<8} be a cube such that {c D
and such that 1f(x)-f'(0)x1<ed for xe&. Let E and F be the
faces x,=0 and x,=56 of Q, resrectively. Set m=aA(E,F,Q).
By 7.2, M(F)=1. We next estimate W( r') . Since fE lies between
the hyperplanes Xq= +e£d and since fF lies between the hyperrlanes
X4 = (a,‘ +€)6, [(y)> (a,l -2€)6 for every vys& '. On the other hand,
fQ 1is contained in the n-interval {x! -ed<x,<(a;+€)6} . Hence 7.7

implies M(T") < (a4 +2e)...(an+2e)(a,l-2g)'n , whence
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(a,‘--2e)n < ﬁ%%;% (aq-+2e)...(an-+25).

Since M(T ) < Ko(f)M(rﬂ) and since €>0 is arbitrary, this im-
plies (15.3). Mm

We give some consequences of Theorem 15.1.

15.4. COROLLARY. A diffeomorphism f :D-—>»D* 1is K-gc iff the

double inequality

£ () 1P/ < 13(x, £)1 < K E(Er (x)P

holds for every xsD. M

15.5, COROLLARY. If f:D-»D' is a diffeomorphism, then
n-1 n-1
1 <R S KO, 1 < xRy (0) < KD,
These inequalities follow from (14.3).M They are true for all
homeomorrhisms although not proved until in Section 34. From 15.2 we

also obtain:

15.6. COROLLARY., If a qc marring f 1is differentiable at a point

a, then either f'(a)=0 or J(a,f;#0. M

16. Examples

In this section we give some examrles of qc mappings.

16.1. Linear mapping., Let A :R®-»R® be a linear bijection.

Then 4'(x)=A for all xs&R®. From 15.1 we obtain
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Thus A 1is qc.

16.2. A radial marping. Let a# 0 Dbe a real number, and set

f(x)==|x|a_qx . Then f is a diffeomorthism of Rn\\{b} onto itself.

We can extend f to a homeomorrhism f* :E® —>R"™ by defining £(0) =
0, f*(co)=a> if a>0, and f‘(o)=a),£’fa))=o if a<0Q. We com-
pute the dilatations of f and f¥,

It is easy to see, by symmetry, that the dilatation ellirpsoid
E(f'(x) has semi-axes tat1x1@7 "x‘a—ﬂ y eee "X‘a—ﬂ. Hence (14.2)

and 15.1 imply

!n—ﬂ

la if 1tat > 1.,

K (£) = tal, Ko (£)

-1

1-n 1al if 1at < 1.

Ky (D)

3
®

i

Thus f 1is qc.

We next show that f* has the same dilatations as f . Let
be a rath family in K. Set [ ={ysl 10s1y1}, [ ={yeT1

]
@e tyl}, and =T \(TLul ). By 7.9, M(T)=M(T )=u(")=
t
M(T,)=0. Hence M(F)=M(T;) and M(T')=-M(T). Thus K, (£*)-=
*

K (f) and Ko(f )==Ko(f).

If =-1, f 1is conformal. It is the inversion in the unit

Sn—1

sphere

16.%. Folding. Let (r, ¢, z) be the cylindrical coordinates of
a point x&R". This means that r>0, 0<¢<2mn, zsRn'—z, and
X, = Tcos @,

rsine,

¥
n
f

X. = 2

i 12 for 3<i<n.

The domain Da’ defined by O<¢<a, is called a wedge of angle «,

O0<a<2n. Given two wedges Da and D , we define a homeomorph-

B
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ism f: Da-;»D8 by f(r,¢,2z)=(r,B¢/a,z). This mapring is
called a folding.

A folding is clearly a diffeomorphism. Moreover, the semi-axes
of EBE(f'(x)) are 8/x,1,...,71. Assuming that « <8 we thus have
by 15.1,

Er(f) = B/a,  Ky(£)=(8/a)"".

Thus f 1is always qc. In particular, choosing wa=mn,=2n, we see
that a half space can be mapred qclly onto a domain whose exterior

is empty.

16.4. Cones. Let (R, ¢,8) be the spherical coordinates of a
point xsR. This means that R>0, 0<9p<2n, 0<06<n, and
x,l=Rsingcos¢,
X2=Rsingsingp,
x3=Rcosg.
The domain Ca, defined by ©<a, is called a cone of angle o,

O<a<n. A natural homeomorphismp f: ca->c is defined by

8
f(Ry¢9,0)=(R,¢,B8/a). Assuming o <B we have Ko(f) =
82 sinox./ox.‘2 sin B8 . The inner dilatation KI(f) is equal to

2(1/’asin2 B) . The yroof is left as an exercise to

max (82/a2, 8 sin
the reader., Thus f is qc if B8<#n. I1f B=7mn, f 1is not qc. Thus
the '"natural" homeomorphism of a half stace onto the complement of
a ray is not gc. We shall show in 17.23 that these domains are not

qclly eqguivalent.

16.5. The infinite cylinder. ILet (R,9 ,9) again be the

spherical coordinates in R3, and let D be the half space ©<mn/2.
We define a mapring f of D as follows: The cylindrical coordi-
nates of f(R,¢9,6) are r=6, @g=¢, z=1logR. Then f is a

diffeomorphism of D onto the infinite cylinder r<=w/2. This mapp~
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ing is qc with KI(f)= n/2, Ko(f)= n2/4 . The proof is again left

to the reader.

16.6. FProjection. Denote by P the orthogonal projection of R™

onto R%™

. Let D Dbe a domain in 821, Then D==P_/‘DO is a
domain in RP. Suprose that u: Do--s»R/l is a Cq—function. Define
f:D—»D by f(x)=x-u(¥Fx) e, . Then f is a diffeomorphism which
maps the (n-1)-manifold xn==u(x,l s e ’xn—ﬂ) onto D, . We compute
the dilatations of f.

Assume first that n=2. Then we obtain from (14.5)
HOE (%) = (lur (Bx) 1+ (e (Px) 12 +8) V22 /1,

Since J(x,f)=1, 1£'(x)12=H(E' (x)) =1/ (£ (xN° .
Next consider the general case, Again J(x,f)=1. Considering

restrictions of f +to 2-dimensional planes rarallel to e, Wwe see

that
1£r(x)t = E(f'(xD—q = (tur(Ex)! +(!u'(Px)|2-+4)1/2),/2‘
Hence
K1(£) = K(£) = 27 (a+ (a244)172yn
where

a = sup lut'(x)! .
stO

Thus f is gc iff a< w.

17. Boundary extension

In this section we study under which conditions a gqc mapping
f:D-»D' has a limit at a boundary point of D. If this limit
exists in a set AC3D, we also give some conditions under which

the extension of f to DUA 1is a homeomorphism. For example, we
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show that a qc mapping f: B® > D' can be extended to a homeomoryh~

ism of B® onto D' iff dD' is homeomorphic to OB®.

17.1. We first give some topological notions. Given a marping
f:D->F" and a point bsdD, the cluster set C(f,b) of f at
b is the set of all points b e B such that there exists a sequen-
Ceé X,4,X5, ... such that xjsD, xj—>b and f(xJ.)-)b'. Alter-
natively, C(f,b) =(\T{DAU) where U runs through all neighbor-
hoods ob b. Thus f has a limit b' at b iff C(f ,b)::{b'}.
Since R® is compact, the cluster set is never empty. The cluster

set of f on a set ACOD is defined by

c(f,4) = U c(f,b).
bsA

The cluster sets of a homeomorrhism f :D->»D' are always subsets

of 9aD'.

17.2. We also need the following topological results: If D is
a domain in FR® and if Ci, isgl, are the components of CD, then
ﬁrlci, is 1, are the components of oD. If f:D-»D' is a homeo-
morrhism and if B is a component of oD, them C(f,B) is a com-
ponent of 4D!', Hence D and D' have the same number of boundary
components. In particular, the homeomorrthic image of a ring is always

a ring.

Our first result states that isolated boundary points are remov-

able singularities.

17.%. THEOREM, Suppose that f :D~>»D' 1is a gc marping and that
b is an isolated point of 90D. Then f has a limit b' at b,
and b' 1is an isolated point of OD'. Defining £*(b) =b' and

f*1D=f we obtain a qc mapping f*:DU{b} -» D' U{b'}. Moreover,
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KI(f*)==KI(f) and Ko(f*)==KO(f).

Froof., Choose a ball neighborhood U of b such that TnaD
={by . Then A=UN{b} is a ring and M(l,)=0. fA is also a
ring with boundary components foU and C(f,b). Since f is gc,
M( FfA) =0, (We use the family Fi’ of 11.3.) By 11.10, C(f,Db)
consists of a single point b', Since q(b',dD'\{b'}) > q(b*, foU)
>0, b' 1is an isolated point of 0D'. The set DlJ{b} is clearly
a domain, and f*:DU{b} > D' U{b'} is a continuous bijection,
and hence a homeomorrhism. Since the family of pat?s through a given

point is of modulus zero by 7.9, f and f¥* have the same dilata-

tions (cf. Example 16.2). M

17 .4, THEOREM. R® cannot be marred qclly onto a rroper sub-

domain.

Froof., Let f :R®->D'c k" be a qc marping. By 17.3, f has a
homeomorphic extension f£*:E'-»>D'u{b'} . Then D'U{b'} is com-
pact and open, which implies D' U<{b'}=R®. Thus b'=w® and
D' =R™., M

We next introduce five concerpts which describe the behavior of

a domain at a boundary ryoint.

19.5. Definition. Let D be a domain in R" and let bedD.

(1) D is locally connected at b if b has arbitrarily

small neighborhoods U such that UND 1is connected.

(2) D is finitely connected at b if b has arbitrarily

small neighborhoods U such that UND has a finite number of
components.

(3) D has rroperty I, 8t b if the following condition is
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satisfied:! If E and F are connected subsets of D such that
bseEUF, then M(A(E,F,D) =w.

(#) D has property P2 at b if the following condition is
satisfied: For each point b,‘ & 8D , b,‘ #£b, there is a compact set
FPCD and a constant &>0 such that M(A(E, F, D)) >& whenever E
is a connected set in D such that E contains b and bq.

(5) D is locally quasiconformally collared at b if there is

a neighborhood U of b and a homeomorthism g of UND onto
{xsR® 1 1x1<1, x, >0} such that glUND is gc. (By Torology, g
raps UN 3D onto Bn_q.)

(6) D has one of the above prorerties on the boundary if it

has it at every boundary point.

We give some alternate characterizations of some of the above

Ltroperties.

17.6. THEQOREM. D 1is locally connected at b iff each neighbor-
hood U of b contains a neighborhood V of b such that each pair
of points in VN D can be joined by a connected set in UAD. In

other words, VN D 1is contained in a component of UND.

Froof, The necessity of the above condition is trivial. Converse-
ly, assume that it is satisfied. et U Dbe a neighborhood of b,
and let V be the neighborhood given by the condition. Then VAD is
contained in a component W of UND. Now VUW is a neighborhood
of b such that (VUW)ND=W 1is connected. Hence D 1is locally

connected at b . M

17.7. THEOREM. The following conditions are equivalent:
(1) D is finitely connected at ©b.
(2) Bvery neighborhood U of b contains a neighborhood V of
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b such that V0D is contained in the union of a finite number of
components of UND.,

(3) If U 1is a neighborhood of b and if (xj) is a sequence
of points such that x.-»1b and xjs»D, then there is a subsequence

J
which is contained in a single component of UNOD.

Froof. Suprose first that (2) is satisfied. Let U be a neigh-
borhood of b and let V be the neighborhood given by (2). Then
VO D 1is contained in the union of a finite number of comronents
Waseoe o W

of UAD. Then V,=VUW,U...UW is a neighborhood

k k

of b such that VqIID has k components Wq y ese o W Hence D

K *
is finitely connected at b.

To prove that (3) implies (2), let U be a neighborhood of b,
and set V, ={x1q(x,b)<1/§}. If no VJTID is contained in a
finite number of components of UND, we can find a sequence of
points Xg s Xs s ees such that xjs»ijlD and such that the toints
xj belong to different comjonents of UND. This contradicts (3).

We finally show that (1) implies (3). Let U and (xj) be as
in (3). By (1), there is a neighborhood V of b such that VcU
and such that VN D has a finite number of comronents. Then there is
a subsequence which is contained in a single comronent of VAOD, and

hence in a single component of UND. M

17.8. Remark. Obviously, the rrorerties (1) and (2) of 17.5 are
topological invariants and (3) , (#), (5) are qc invariants. More
precisely, let D and D' be domains, let bsdD, and let
f:D->D' be a homeomorphism which mars D onto D'. If D is lo-
cally connected or finitely connected at b, the same is true for
D* at f(b). Moreover, if fID is qc, then f similarly preserves

the rroperties P,l , }2 y and local qc collaredness.
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We next establish some relations between these properties. The

following statement is trivial:

17.9. THEQREM. If D is locally connected at b, then D is

finitely connected at b. M

If D is the disk B2 minus the radius {teql 051:<1}', then
D 1is finitely connected but not locally connected at the points teq,
0<t<1.

17.10. THEOREM. If D is locally gclly collared at b, D is

locally connected at b and has the rrorerties Iq and }2 at b.

Froof. Since D 1is locally qgclly collared at b, there is a

neighborhood U of b and a homeomorrhism g:UN 5—>B3IJBH'1

such
that gl UND 1is qc. Here Bﬁ ={xs BR xn> O} . We first show that
U can be chosen arbitrarily small. Let V be a neighborhood of b,
e can find r>0 such that r<1-1g(b)! and such that 1g(x)-g(b)!
<r implies xsVND. Then U, = (V‘\ﬁ)LJg_an(g(b) ,r) is a neigh-
borhood of b. Moreover, U,cV and U1f15==g—an(g(b) ,T) . Setting
h(y) = (y - g(b)/r we obtain a homeomorphism g, =hog U0 D -—)BI:UEn"'1
such that 81 is gc¢ in UqIID . Thus Uq and g4 have the same
prorerties as U and g, and K(g,) =K(g) . Moreover, we see that
one can choose g(b)=0.
Since Bﬁ is connected, it follows at once that D 1is locally
connected at b . It remains to rrove the rrorperties Iq and Pz.
F,: Let g:UND—>B2UB" be as above, with g(b)=0. Let
E and P be connected sets in D such that bsEUF. We must prove
that &(A(E,F, D) = . Since the modulus is a monotone function and
since g is qc, it suffices to prove that M( )= o, where [ =

A(g(ENU) , g(FNU), B}) . Rerlacing U by a smaller neighborhood if
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necessary, we may assume that every hemisphere S+(t) =Sn—1(t) n Bﬁ
meets both g(ENU) and g(FNU) for O<t<1. Suppose that ps
F(T), and set T(t)=a(g(Enu), g(Fnu) »5,(t) . Then p@I18(t)e
F(T(t)) for 0<t<1. By means of 10.2 we obtain

J@ndm 2 fdt f@n dm, _4 zfmi(t)('r(t)) dt > b, f‘.iti = ® .,
0 s(%) 0 0

Hence M(T )= o .

P2: Let g and U be as above, and let b,lsBD , b,‘;éb . We
may assume that b,l gU. Let J Dbe the segment Xy = eee =X, 4= 0o,
1/6<x_ <1/2, and set F=g 'J. We show that F satisfies the con-
dition in the definition 17.5.(4) of I,. Let E be a connected set
such that E contains b and b, . We must find a positive lower
bound for M(A(E,F, D) . Since g 1is qc, it suffices to find a lower
bound for M(T ) where [ = A(g(ENU),J, PI:) . If QGF(F) , we
again obtain by 10.2,

1/2
Ign dm > fdt IQH dm,_q 2 b, log 2 .
1/4 8(t)

Hence M(F)anlog2. Thus D has rroperty F, at b. M

17.11. Exercise. Frove that D has rroyperties F, and }2 at
bsdD if b has a neighborhood U such that /Ln_,‘(Un oD) =0 .
Hint. Frove first, using the idea of Hurewicz-Wallman [1, footnote on
T. 104}, that 10.2 is true if 1 is replaced by A(E, F, S\ Q) where

/ln__z(Q) =0 . Then apply the same method as above.
17.12. THEOREM. Let D be a domain, let be 3D, and suppose
that b has a neighborhood U such that UN3D is an (n-1)-dimens-

ional C'-manifold. Then D is locally geclly collared at t .

Iroof. Let T be the tangent hyrerrlane of 9D at b, and let
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P:93D-—>T be the orthogonal rrojection. Then P 1is a homeomorthism
in a 0OD-neighborhood V of b . Denoting by e the unit normal of
T, we set g(x+te)=P(x)+te, x8V, tsR/‘. Then g 1is a diffeo-
morrhism in a neighborhood of b, and hence qc in a smaller neigh-
borhood of b. In fact, we could use 16.6 to show that K(g) can be
made arbitrarily close to 1. We can then find a neighborhood U of
b such that g maps UnD onto a half ball plus its boundary
(n-1)-ball. Hence D 1is locally qclly collared at b. The condition
be 3D was needed to guarantee that D does not lie on both sides of

the boundary manifold. M
We now turn to the boundary extension of qc mappings.

17.1%3, THEOREM., Surpose that f :D-» D' 1is a qc mapping and that
D has rroperty P, at bsedD. Then C(f,b) contains at most one

point at which D' is finitely connected.

troof., Suppose that D' 1is finitely connected at two distinct
points % ,bé of C(f,b). Choose ball neighborhoods Ui of bi
such that ﬁqf1ﬁz==¢ . There are sequences (xj) and (yj) such
that xy,348D, xj-;.b, y;=>b, f(xa.)-—>b," and f(yj)—;»bé.
From 17.7 it follows that U1I1D' has a component Eq which con-
tains a subsequence of (f(ij . Similarly, U,N D' has a component
E, which contains a subsequence of (f(ij . Set [ = A(f_qEq,
£7'B,, D) and M'-a(g,,B,,D') . Since bsm;um;, it fol-
lows from property P, that M(T )= . On the other hand, r>r
where A 1is the ring R(ﬁq ,ﬁz) . Hence M(f")s M(fl)< ® by 11.5.

This contradicts the gcty of f . M

17.14., COROLLARY. If D has rrorerty F, at bsoD, if D!

is finitely connected on the boundary and if f :D-»D' 1is qgc, then



59 17.15

f has a limit at b . M

17.15, THEQOREM. Suppose that f : D-»D' 1is a qc mapping and
that D is locally connected at be3D. If D' has property Ey
at some point of C(f,b), then f has a limit at b.

Proof, Suyrose that C(f,b) contains two distinct points b,‘l
and bé and that D' has prorerty 1—2 at b,'l . By the definition
of }2 , there is a compact set FcD' and a positive number b
such that WM(A(E, F,D')) >6 whenever E is a connected set in D'
such that E contains b,‘l and bé . Since D 1is locally connected
at b, we can choose a sequence U,‘ ’ U.2 sy »++ Of neighborhoods of b
such that every Uj ND is connected and such that q(UJ.) -» 0. Set
FJ.=A(UJ.nD,f"'F ,D) and FS = A(£(U4N D), F,D') . Since ble
o(f,b)cT(U,A DY, M(F))>6. On the other hand, we can find
spherical rings A with radii uy<vy such that r;j < r‘J and
uJ./vj.—)O . Consequently, M( rJ.) -»> 0, which contradicts the gcty

of f. m

One can obtain several results by combining the above theorems.
We give some examples. Before that, we give without proof a simple

topological result:

17.16. THEOREM. Suppose that f ¢ D—> D' 1is a homeomorrhism

such that 1lim f(x) = £*(b) exists for every b in a set EcC3D.
x>b
Then the extension f*:DUE-» D' Uf*¥E of f is continuous. If,

in addition, 1lim f"/‘(y) exists for every b'sef*E, f*¥ is a
y>b!

homeomorphism. M

17 .17. THEOREN. Suppose that f :D-—» D' 1is a gqc mapping, that

D 1is locally qclly collared at every point of ECJD and that for
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every bsE, D' 1is locally gclly collared at some point of C(f,b).
Then f can be extended to a homeomorphism f*:DUE->D'UE' where

Et=C(f,E).

Proof. If bsE, it follows from 17.10 that D 1is locally con-
nected at b and that D' has 1rorerty P2 at some toint of
C(f,b). Hence, by 17.15, f has a limit f*(b) at b . Similarly,
f'q has a limit at every point of f*E. The theorem follows now

from /‘70/‘65 &

17.18., THEQOREM. Suppose that DO ig locally qclly collared on
the boundary and that D and D' are locally connected on the
boundary and qclly equivalent to DO . Then every qc mapping
f:D-»D' can be extended to a homeomorphism f¥*:D-»D'.

FProof. We can write f=hog where g:D-—)DO and h:DO—;-D'
are qc mappings. By 17.10 and 17.15, g has a limit at every point
of dD. By 17.9, 17.10 and 17.14, h has a limit at every point of
BDO . Consequently, f has a limit at every point of OD. Since the

same is true for f_q, the assertion follows from 17.16. M

17.19. Definition. A domain DCR® is a Jordan domain if 3D
n-1

is homeomorphic to S

A Jordan domain need not be homeomorrhic to B", if n>3. A
famous counterexample is Alexander's horned sthere (Hocking-Young {1,
p. 1761). Hven if a Jordan domain is homeomorphic to Pn, it need not
be qclly equivalent to B". Counterexamyples are given in 17.24.% and
in Gehring-vdisdld [2]. It is not known whether a gc rarping between
two Jordan domains can always be extended to the boundaries. However,

the following weaker result is easily established:
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17.20, THEOREM, Let D apd D' be Jordan domains which are
qclly equivalent to a ball. Then every qc mapping f :D-—> D' can be

extended to a homeomorphism f*:D-—>D'.

Froof. By a result of Wilder {1, p. 66}, every Jordan domain is
locally connected on the boundary. Since B is locally qclly collar-

ed, the theorem follows from 17.18. M

17.21. Remark. Suppose that D 1is a simply connected domain in
§2 and that D 1is locally connected on the boundary. If 0D con-
tains more than one point, we can map D conformally onto B2 by
the Riemann mapping theorem. By 17.18, this mapping can be extended
to a homeomorphism of D onto Ez. Hence D 1is a Jordan domain. We
have thus given an analytic proof for the following topological theo-
rem: If D 1is a simply connected domain in §° and if D is local-

ly connected on the boundary, themn 0D 1is either empty or a roint or

a Jordan curve. For a topological yroof, see Newran [1, p. 1671 .

17.22. THEOREM, Let D be a domain in E® such that D is
locally connected on the boundary but D is not a Jordan domain.

Then D 1is not gclly equivalent to a ball.

Proof. If f:D-—»B® is qc, it follows from 17.18 that f can
be extended to a homeomorphism f£* :D—>E". Thus D is a Jordan

domain. M

17.2%. Examples. From 17.22 it follows that the following do-
mains are not qclly equivalent to a ball:

(1) R™. This was already proved in 17.4.

(2) A ball minus a radius (n>3).

(3) The comrlement of a ray (n>3%), cf. 16.4,
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(4) More generally, the complement of a closed set whose topo-
logical dimension is less than n-1. (See Hurewicz-Wallman [1, p.
48%.)

(5) The domain between two parallel planes (n=3).

(6) More generally, the domain D=BXXR'¥ where 1<k<n-2.

17.24, Remarks. 1. Theorem 17.% was proved by Loewner [1]. It
has the following generalization (Vdis#la (41): If E 1is closed
with respect to a domain D and if /ln__,‘(E) =0, then every gc
mapring f of DNE has a unique extension to a qc mapping £* of
D such that K (f¥)=-=K;(f) and K (f*)=K,(f).

2. Theorems 17.20 and 17.22 are from Vdisdld [2}. Their proofs
were essentially based on the fact that P? has the Troyperties Pq
and }2 . The definitions of Pq and Pz have not been previously
published., The property Pq is due to the author, while the defini-
tion of P2 ig due to N8kki who considered it in his unpublished
licentiate's thesis. The atove results concerning P2 in 17.10 and
17.15 are also due to him.

(After the manuscript of these notes was completed, Ndkki pub-
lished his doctor's thesis [1], which contains further results in
this direction. His terminology is slightly different from ours.)

3. One can easily generalize 17.12 by allowing that the boundary
manifold has & corner at b . For example, every polyhedron is local~
ly qclly collared on the boundary. However, 17.12 is not true if we
completely drop the differentiability hypothesis on o6D. In other
words, a Jordan domain need not be locally qclly collared on the
boundary. As a counterexample consider the domain D in R3, defined
by x>0, 1x,! <x3, where a>71. Then D is not locally gclly

collared at the points of the edge =0 . This can be proved

X,l=X2
in several ways, see e.g. Gehring-Vaisdld (2, p. 621. In fact, D

does not have property P,l y and, if a>2, not rrogerty }2 either.
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Curiously, it has P2 if 1<a<2. These results are due to Nakki
{1, p. s8],

4. Gehring [6] has froved that if a Jordan domain D in K’
is locally qgclly collared on the boundary, it is also globally qclly
collared in the following sense: There exists a neighborhood U of

3D and a homeomorphism g of UND onto a set {xe;R5

la<ixt<1}
such that g1 UND 1is gc. It is not known whether the corresponding
result is true for n>4 . Furthermore, Gehring proved that the above
global condition implies in all dimensions that D 1is qclly equi-
valent to BP, We shall rrove the latter result in Section 41.

S. The Carathéodory theory of prime ends has been generalized

to n dimensions by zorid [1], [21.

18, Distortion

18.1. THEOKEM. For every K>71 and nsN. n>2, there exists
a function 9§ : (0,1) —}Iﬁ with the following rrorerties:
(1) 92 is increasing.

(2) 1lim Qg(r) = 0.
r>0

(3) 1im 9%(r)= ® .
r->1

(4) Let D and D' ©be rrorer subdorains of R® and let
f:D-»D' be K-qc. If x &and y are points in D such that
0<I1y-x1<d(x,oD), then

1E(y) - £(x)1 1£(y) - £(x) 1y - x!

—_—— i —¥ < oB( -~
N T S T D R I

).
Froof. Suppose that f:D—>D' and x,y are as in (4). We

abbreviate d=d4(x,9D), d'=4d(f(x),aD'), dv=4a(f(y) , oD') . Let

A be the stherical ring {z! ly-x!1<lz-x1<d}. Then ACD. Setting
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C,= fB%(x, 1y-x1) snd C,=CfB"(x,d), we have fA=R(C_,C,) .
Here C, contains f(x) and f(y) while C, contains @ and
points b',b* in 9D!' such that 1f(x)~-b'1=4', 1£f(y)~-b"1 =4,
By 11.9, M(T}A) is not less than the numbers aen(d'/lf(x)—f(y)l),

&h(d'uflf(x)—f(y)l) . Since f is K-qc, M(F}A) < KM(TL), whence

a
Ty-X1

K o, _4(Log )18 > se_(a'/12()-£(3)1) .

Set u (t) = sup {rlaen(r)2>t} . Since 3, is decreasing,
1£(x) - £(y)1/4* _<_9§(|y-x|/d) where

OR(r) = 1/u (Ko, 4(log 1)) .

The same inequality holds if d4d' 1is replaced by d'. The properties

(1) ,(2), (3) follow from the rrorerties of 2y s given in 11.7. M

18.2., THEOREM. For every K>1 and neN, n>2, there is a
function ¢§: fo0,1) > {0,1) with the following properties:
(1) ¢§ is increasing.

(2) 1lim ¢§(r) = 0.
0

(3) lim ¢p(r)
h o

ﬂ .

() If £:B®* = B® is a K-qc mapping such that f£(0)=0, then

1£(x)1 <ep(tx1) for all xsB".

Proof. We apply 18.1 by taking x=0. Since d4(f(y) , 9B™) =
1-1£(y)1, we obtain 1£(y)/(1-1£(y)D < Qﬁ(lyl) , which implies

Qg(lyl)

1If(y) € e
v s ﬂ+9§(|y|)

= ¢§(|y|) .om

18.3. Remark, Simjilar results can be rroved for more general

domains. In general, a point of a compact set cannot be maryped near

a boundary point unless the whole set is mapped near this point. We
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shall give a precise meaning for this in 21.13.

18.4, Remark. Theorem 18.1 is due to Gehring {3, p. %82]. He

also proved that for small r we can choose Qg(r) =ailra where

a==Kq/(q_n) and a, is a constant. Thus a qc mapping is Holder con-~

tinuous.

19. Eguicontinuity

Suprose that D and D' are proper subdomains of RP. Let
K>1, xosD and yOsD‘ be fixed, and consider the family of all
K-qc mappings f :D—-> D' such that f(xo) =¥, From 18.1 it immedi-
ately follows that this family is equicontinuous at X, In this
section we give some more general results of this type. Since we do
not want to exclude the point at infinity, we use the spherical

metric.

19.1. Definition. Suprose that T 1is a topological stace, that

(M,q) 1is a metric space and that W is a family of mappings

f:T—>M. W 1is egquicontinuous at a point xOsT if for each €>0
there is a neighborhood U of X, such that q(f(x) ,f(xo» <g
whenever xsU and few. If W is equicontinuous at each point

of T, it is called equicontinuous.

In our case, T 1is always a domain in R®, M=F", and q is

the spherical metric.

19.2. THEOREM. Suppose that D is a domain in E%, that K>1
and that r>0. If W is a family of K-qc mappings of D (not

necessarily onto a fixed domain) such that each fsW omits two
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points af,bf with q(af,bf)Zr, then W 1is equicontinuous.

Proof. Let xOsD and 0<e<r. Choose ball neighborhoods U
and V of x, such that TcVcD. Let A be the ring v\T. If
few, then fA=R(C_,C;) where C_=f0 and C,=CfV. Hence
a(Cy)2aqa; ,bp)>2r . If x is an arbitrary point in U,
a(£(x) , £(x,) <a(C ) . Using the function )\n(r) , defined in 12.4,
we thus have KM(T,)>M(T;,)>% (t) where t=min(r,q(f(x), f(x )
We choose U so small that KM(FA)S 7‘11(8) . Then )‘n(t)s )«n(e) for
every x&U and fesW., Since >‘n is increasing , this implies
t<e. Since e<r, we have q(f(x), f(xo)) =t <e whenever x&U
and fesW. Hence W 1is equicontinuous at Xg 0 M

19.%. COROLLARY., If W is a family of K-qc mappings of D such
that every fsW omits two fixed values, then W is equicontinuous.
In particular, if D has at least two boundary points, the family
of all K-qc maprings of D onto a fixed domain D' 1is equicontinu-

ous. M

19.4. THEQKEM. Let W Dbe a family of K-qc mappings of D . Then
W 1is equicontinuous if one of the following conditions is satisfied:

(1) There are points X4+ %, 6D and a number r>0 such that
each feW omits a point a. such that q(af s f(xi)) >r for i=
1,2.

(2) There are points Xq s Xy s Xy 6 D and a number r>0 such
that each feW satisfies the three inequalities q(f(xi) s f(xj)) >r,

idi,

Proof. (1): Set D, = D\{x,‘} . Then every f1D, omits the
points a, and f(x,‘) . By 19.2, the family of all restrictions

leq is equicontinuous. This means that W is equicontinuous at
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each point of D except rossibly at x,. Considering similarly the
restrictions f1 D‘\{xz} we conclude that W 1is equicontinuous also
at X .

(2): Bvery f | D\\{xq y X} omits the roints f(xq) and f(x2).
By 19.2, W is equicontinuous at each point of D except possibly
at x, and X5 . Considering similarly the restrictions
£1D\{x,, Xz} and f10D N{x, Xz} we conclude that W is equi-

continuous also at these points. M

19.5. COROLLARY, If W is a family of K-qc mappings of a domain
D such that each fe&W assumes at three given points three fixed

values, then W 1is equicontinuous. M

19.6. Remark. Surpose that W 1is a family of K-gc maprings of
D and suppose that there are Xg X586 D and r>0 such that
q(f(x,l) s f(xz))Zr for all fsW. Then it follows from 19.2 that W
is equicontinuous at each point of D, except possibly at x4 and
X5 . However, W need not be equicontinuous at these points. For
example, let D=R" and let f_;(x)=2‘-jx , f(w)= @ .Then W=
{fjl js 2z} is a family of 1—qc0mappings of D, and q(fj(O) ,fj(aﬁ)
=1 for every integer Jj. However, f 1is not eqguicontinucus at O

and w .

19.7. Remark. This section is an n-dimensional version of Lenhto-

Virtanen 1, pp. 71-73]1.

20. Normal farilies

The purpose of this section is to prove Ascoli's theorem. Let T

again be a topological space and let (M, g) be a metric space.
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20.1. Definition, A sequence of maprings f;j PT—>M is said
to converge c-uniformly to a mapping f:T > M if fj —» f uniformly

on every compact subset of T,

20.2. Definition. A family W of continuous marpings f:T-»M

is called a normal family if every sequence of W has a subsequence

which converges c-uniformly in T.

20.%. THEOREM. Let (M, q) be complete, and let f;j tT—>M be
an equicontinuous sequence which converges at every point of a set

E which is dense in T . Then (fj) converges c-uniformly in T.

Iroof. Let F be a compact set in T, and let €>0. From the
equicontinuity it follows that every xs F has a neighborhood U(x)
such that q(fj(x) s fj(y)) <e/5 whenever ysU(x) and jsN. We
choose a finite covering {U(x4), ... ,U(xk)} of F. Since E is
dense, we can find points a, sU(xi) NE, 17<i<k. Since (fj) con-
verges pointwise in E, there are integers n; such that
a(f (a;) , £ (a;)) <e/5 whenever m>n; and n>n; ,1<i<k. Set
n, = max (n,l,...,nk). If xeF, m>n, and n>n, then x be-
longs to some U(xi) , and we obtain q(fm(x) ,fn(x» <
Qe (x) 5 1500, ) + a(e (%)), £(a, ) + a(f (a,) , £ (a; ) +
q(fn(ai) ’fn(xi» + q(fn(xi) ,fn(x» <g . Since M 1is complete, (f.)

J
converges uniformly on F. M

20.4, ASCOLI'S THEOREM., If T is a separable topological space

and if M 1is a compact metric space, then every equicontinuous fami-

ly W of mappings f:T-—>M is a normal family.

Froof. let sz,‘ s f2 , o« be a sequence of W . Since T 1is

separable, it contains a countable dense subset E-= {an ineN}.
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Since M 1is compact, J has a subsequence qu»qu ,f,‘2 ; ««» which
converges at a, . By induction, we obtain sequences Jk= fkﬂ’

such that J is a subsequence of Jk—1 and such that Jk

sz s eue K
converges at a, . Then the diagonal sequence J' = qu ,f22 s e s
fkk s +«s converges at every toint of E. Ry 20.3, J' converges

c-uniformly in T . Hence W 1is a normal family. M

Ry Ascoli's theorem, we obtain the following consequence of the

results of Section 19:

20.5. THEOKEM. Let D be a domain in R°, and let W be a
family of K-qc mappings of D such that some of the conditions in

19.2~19.5 1is valid. Then W is a normal family. M
20.6. Remark. The material of this section is classical. Our

presentation is from Lehto-Virtanen {1, pr. 74-751. 20.3 was given as

a separate theorem because it is needed in Section 21.

21, Convergent sequences

Surrose that W is a sequence of K-qc marpings of a domain D
such that each member of W omits two fixed points. By 19.% and
20.5, W has a subsequence which converges c-uniformly to a mapping
f:D->F"'. It is natural to ask what can be said of f . This and
related questions will be considered in this section. 1t turns out
that f 1is either a homeomorrhism or a constant. In the first case,

f is even X-qc, but this is not proved until in Section 3%7.

21.1. THEOREM, Let fj: D—> Dj be a sequence of K-qc marrings

which converge pointwise to a mapring f: D - B®. Then there are
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three possibilities:

A, f 1is a homeomorphism onto a domain D', and the convergence
is c-uniform.

B. f assumes exactly two values, one of which at exactly one
point. The convergence is not c-uniform.

C. f 1is a constant. The convergence may be c-uniform or not.

rroof. Suppose first that f assumes exactly two values bq=
f(aq) and b2-=f(a2) . Then q(fj(aq) ’fj(aZ» >r>0 for all j.
Hence, by Remark 19,6, the family {fjlgjeN} is equicontinuous in
D except possibly at a, and as . By 20.%, fj —- f c-uniformly
in D\{a;,a,}. Since fD={b,,by}, £(D\{a,,a,}) is either
{bq} or {bZ} . Since f 1is not continuous, the convergence cannot
be c-uniform, We have thus the situation B.

It remains to prove that if f assumes at least three values
b, =f(aq), b, = f(az) ,b5:=f(a5) , then we have the situation A. Since
q(fj(ai), fj(ak» >r>0, {fj 1 s N} is equicontinuous by 19.4. Ry
20.3%, fj—; f c-uniformly. Hence f 1is continuous. By Topology, it
suffices to show that f is injeccive.

Suprose that there are distinct points 245258 D such that
f(zq)z f(zg) . We first prove that every neighborhood U of 1z,
contains a point xoﬁ'zq such that f(zq) =f(xo) . #e choose a sphere
ScU such that S separates the points Zq 5 2o in F". Then f8
separates fj(zq) and fj(ZZ) for all j . Consequently, there are

roints xjsS such that
(21 .2) q(fj(xj) [ fj(Z,‘)) S q(fj(ZZ) [ fj(Z/‘)) .

Fassing to a subsequence, we may assume that xj~91Q)sS . Since

A
RIENC IR IC IR
N .
Q(fj(xj) ’fj(xo» + q(fj(xo) y£(x,) >0 as j-—> . Hence (21.2)
implies q(£(x_ ), £(24) < a(£(zy) , £(z4N=0.

{fj | je N} is equicontinuous at x
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Next we trove that every xosD has a neighborhood U such
that f1U 1is either injective or constant. Since {fj 1 jeN} is
equicontinuous, there is a ball neighborhood U of X, such that
q(fj(x) ' fj(xo)) <1/2 whenever xsU and jsN. If U does not
have the desired property, we can pick distinct points Uq s Uy u3

in U such that f(u,‘);éf(uz)zf(uE). We join wu, and u, by an

arc Joc U and choose another arc J,l such that the end points of

Jy are u; and a point U, 60U and such that J,\U={yj,

I N d,= $. If A is the ring U\(JOU J,) s then fJ.A is the ring
3 cd J. J . J

R(CO s C4) where Cy = fjJO and Cf = ij(U\J,l) . Then q(co) >

3 - I ed

Q(fj(u/‘) ’ fJ(uZ)) 3 Q(C,‘) EQ(ijU) =1, and Q(CO ’ C/‘) <
Q(fj(uz) . fj(uE)) . Using the function 1n(r ,t), defined in 12.6,
we obtain M( Qj) zln(rj s tj) where rj = q(fj(u,‘) s fj(uZ)) -
q(f(u/‘) s f(uz)) >0 and t,j = Q(fj(uz) s fJ(uE)) ->» q(f(uZ) s f<u5)) =0 .
From 12.7 it follows that M(T, ) > ® . On the other hand, M(T, )<

J J
K M( 11) . Since A 1is independent of j, this leads to a contradic-
tion.

To complete the proof, we let D,l be the set of all xs& D which
have a neighborhood in which f 1is injective, and D2 the set of
all xes D which have a neighborhood in which f 1is constant. Then
D4 and D2 are open and disjoint, and D= Dy U D2 . Since Zq L‘D,l 3
D2#¢ . Since D is connected, D=D,. Hence f 1is constant, which

is a contradiction. M

21.*, COROLLARY. If f;j :D —)Dj is a sequence of K-qc marpings
which converge c-uniformly to a marping f: D—>R", then f is either

a homeomorphism onto a domain D' or a constant. M

21.4. Remark. In Section 37 we shall rrove that the homeomorph-

ism in the case A is in fact K-qc.
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It is natural to ask how the domain D' 1in the case A or the
constant in the case C is related to the domains Dj . We shall next
study these questions in detail. The discussion falls into three
parts according as 9D 1is empty or a point or a set consisting of

at least two points.

21.5. THEOREM. If fj: R® 5 R® is a sequence of K-qc marpings
which converge c-uniformly (i.e. uniformly) to a mapping f , then

f is a homeomorphism onto E=.

Proof. If f 1is constant, then q(fjﬁn) - 0. However, since
fjﬁn:=ﬁn, this is impossible. Hence we must have the situation A. M
21.6. Remark, It is possible that fj converge non-uniformly

to a constant. Examrle: fi(x):zx-+jeq s fj(ao = ® .

21.7. THEOREM. Let D=FR"\{a}, and let f£;:D—>Dy be a sequ-
ence of K-qc marpings which converge c-uniformly to a mapping f.
Then f 1is either constant or a homeomorphism onto a domain R-\{b}.
In the second case, b=1im b. where D.=E \{b.}.
J>o J J
froof. Suppose that f 1is not constant. Ry 21.3%3, it is a homeo-
morphism, By 17.3%, fj can be extended to a K-qc marping fgz

SRR, f;(a) =b If X4 %5, x5 are distinct points in D,

3°
Q(fj(xi) . fj(xk)) >r>0. Hence {f?jfi jeN} 1is equicontinuous by
19.4. By 20.3, f; converge uniformly in B® to a mapping f¥*. Ry
21.5, f£¥ is a homeomorphism onto & . Thus f maps D onto

B\ {b} where b=f*(a)-=1lim fzf(a) =limb. . M

.j .

We next consider the case where D has at least two boundary

points. #¥e need the concept of the kernel of a sequence of sets.
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21.8. Definition. Let E;+Ey, ... Dbe a sequence of sets in =
The kernel ker E. of this sequence is the set of all points in B?
j>m
which have a neighborhood which is contained in all but a finite num-
ber of the sets Ej . EqQuivalently,
@® ®
ker E. = U int M E,.
P k=1 j=k 9

The kernel of a sequence is always an oren set, However, it need
not be connected if the Ej are domains, We shall also use the
simpler but less rigorous notation kerE. for ker E..

21.9. THEOREM. Let D be a domain which has at least two bound-
ary points. Let fj: D—)IG be a sequence of K-qc mappings which
converge c-uniformly to & mapping f . Then f 1is either a homeo-
morphism onto a component of KerDj or a constant in

C(ker D, Uker ng) .

d

Froof. Suppose first that f is a homeomorphism onto Df. We
first show that D'c:kerIﬁ . Let o8 D', and choose & neighborhood
U of xozf"'(yo) such that §cD. Since f;—>f uniforsly in dU,
there is a ball neighborhood V of Yo and an integer jo such
that fj(xo) &V and anjBU=Q5 for 3230 . Since V 1is connected,
vca ijCDj for 3230 . Thus yosker D;j s, whence D*!c ker D;j .

Let G be the component of kerD3 which contains D'. Surpose
that D' £G. Then there is a point bsGNOD'. By the definition of
the kernel, there is a ball neighborhood U of b and an integer
‘jo such that UCDJ. for j> ‘jo . Hence g;j = quIU is defined for
JZ.JO- Since every gj omits two fixed values, namely the boundary
points of D, {gjlgjzjo} is a normal family by 19.% and 20.5.
Fassing to a subsequence, we may therefore assume that gj-a'g c-
uniformly in U . Consider a point xs»f*q(D'rlU) . Since fj(x)-é

f(x) and since {gjl jz;h)} is equicontinuous at f(x),
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q(gj(f(X))  X) = Q(gj(f(x)) ,gj(fj(x))) ~ 0. Thus g(f(x))=x for
xsf_/‘(D' NU). In particular, g is not constant in the non-empty
oren set D'NU., By 21.3, g 1is a homeomorphism of U onto a
domain V. By the first part of the yroof, Vc ker ngcD . Hence
g(b)sD. Since f(g(y) =y for ysD'NU, we have f(g(b) =

lim f(g(yi)) = lim y; = b, where y, 1o s e is any seqQuence in
D' nNU converging to b. Thus bs D', which is a contradiction and
rroves that D' =G,

If f 1is not a homeomorrhism, then, by 21.%, f(x) =c = constant.
Since every neighborhood of ¢ meets D, for large j, cs
g(kerng) . It remains to show that the assumrtion c &ker Dj leads
to a contradiction. Choose a ball neighborhood U of ¢ and an
integer jo such that UCDJ. for jzjo . As above, the family
{g;j 1 ijo} is equicontinuous. If xe& D, then fj(x)sU for large
5+ and we obtain q(x, gj(c)) = q(gj(fa.(x)) s gj(c)) - 0. Hence gj(c)
converges to every point xe& D, which gives the contradiction. M

We next show that in the situation A, the inverse mappings f"/l

converge to £=7.

21.10. THECREM. Suppose that fi : D~>Dj is a sequence of K-qc
marrings which converge to a homeomorphism f :D-» D', Then for every
compact set FC D' there is an integer ;jo such that E‘CDJ. for

- -1
jz;jo . Moreover, the maprings qulF converge uniformly to f IF.

Froof. Surpose first that F#D'. This is always the case if
D' £ B®. Choose a domain G such that Fc G and such that G is a
proper subset of D', Since Dtc ker D;j by 21.9, we can find for
every ye&G a neighborhood U(y) and an integer j(y) such that
U(y)cD, for J>j(y). Choose a finite covering {U(y,l) s eee s UGIR

J
of G, and set J, =max (;j(y,l) g eee s ;j(yk)) . Then FCGCDJ. for
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32,30’ and the first assertion is proved.

The mappings gj==f51|G are defined for J§>j, . If a,;,a,
are two points in D\ £ s fj(ai)éf§ for large j . Hence g5
omits the values a, 48, for large J. PRy 19.2, {gjl 32,30} is
equicontinuous. By 20.3, it suffices to rrove that gj(yo)—; f—q(yo)
for an arbitrary y_ &G. Choose &>0, and set xo-_-f"q(yo) . Py
equicontinuity, Yo has a neighborhood U« G such that
ag;(3) , e5(3 D <e for all yeU and >3, . Simce fi(x))->73,,
there is j,>J, such that fj(xo)sU for §>i4. For J>j, we
then have q(xo, gj(yo» = q(gj(fj(xo» ,gj(yoD <€ . Hence gj(yo)
-> XO .

Finally, if F=D'=R", we can choose compact prorer subsets
Fq ,FZCZD' such that FqIJF2==F . By what was proved above,
fg" - £ uniformly in each F,, and hence uniformly in F. &

We next consider the sprecial case where Dj is independent

of J.

21.11. THEOREM. Suppose that D is a domain which has at least
two boundary points and that fj : D> D' 1is a sequence of K-gc mapp-
ings onto a fixed domain D' such that fj—) f ryointwise in D.
Then D' has at least two boundary points, and the convergence is
c~uniform. The limit mapping f 1is either a homeomorphism onto D’
or a constant ce&dD'. In the first case, fgq e-;>f"/l c-uniformly in
Dt*. The second case can occur only in the following cases: (1) 0D
is connected, (2) 8D consists of two points. (3) 3D has an in-

finite number of components.

Froof. From 17.3 it follows that OD' has at least two points.
Ry 19.3, {fj | jeN} is equicontinuous. By 20,3, fj—>‘f c-uniform-

ly. By 21.9, f 1is either a homeomorphism onto D' or a constant
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c& 3D'. In the first case, fgq —>f"/I c-uniformly by 21.10 . Suppose
next that f£(x)=c = constant and that 8D has exactly k components
Bys eee s B, where 2<k< o . We must show that k=2 and that
each Bi consists of only one point. By 17.2, 0D' has exactly k
components Bj ., ... 4 Bf: such that for each Jj, B} 1is one of the

cluster sets C(fj , B ). Passing to a subsequence, we may assume

m
that B = C(fj yB;) for all jeN and 1<i<k. Choose a compact
set FCD such that the sets Bi are contained in different com-
ponents of CF. For example, we may put F={xeD1q(x,dD)>r}

for a sufficiently small r . Then also the sets B; are contained
in different components of gij . Since fj(x)->c: uniformly in

F, q(ij) —> 0. Denoting by U, the component of Cf,F which has
the largest spherical diameter, we have q(ng).=q(ij) for large

j s whence q(gﬂj) —> 0. On the other hand, QUj contains all but
one B;. This is possible only if k=2 and if one of the sets Bi,
say Bé s contains only the point ¢ . By 17.3%, fj can be extended
to a K-qc mapping f§ :DUB,—>D'U Bé . Then fg(x) — ¢ pointwise

in DUB,. If B, contains more than one point, {f;’tj sN} 1is
equicontinuous by 19.%. Hence, by 20.3%, f?-e»c c-uniformly. By what

was proved above, ¢ 1is a boundary point of D' U Pé . This contra-

diction proves that B’l contains only one point. M

21.12, Remark, The limit function can actually be constant in
the three cases mentioned in 21.11. As examples we may consider the

mappings fj(x) =x+Jje,, and set D=D' ={x | x, > 0} for the case

(1), and D=D'=C({ie, 1 ie 2} U{w}) for the case (3). For the case
= 1

(2), let D=D'=¢{0, »}, and set fj(x) = 3% .

We give an application which is closely related to the results

of Section 18. In particular, 18.2 is an easy corollary of it.
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21.1%3, THECREM. Suppose that D and D' are domains, each of
which has at least two boundary points. Suprose also that F is a
compact set in D and that K>1. Then for every €>0 there is
5> 0 with the following property: If f:D-»D' 1is a K-qc marping
such that q(fF,0D')<&, then q(fF)<e.

Froof. Suppose that the theorem is not true. Then there is €>0
and a sequence of K-qc marpings fj: D— D* such that q(ij, aD') <
1/3 and q(ij)Ze . Since every fj omits two fixed values,

{fjl jeN} is a normal family. We may therefore assume that fj->:f
c-uniformly in D. By 21.11, f 1is either a homeomorrhism onto D'
or a constant c¢&9Df. The first case is impossible, because

q(ij, dD') -» 0. The second case is impossible, because q(ij)Ze .
M

Making use of the last staterent of Theorem 21.11, we similarly

obtain the following result:

21 .14, THEOREM. Surpose that D and D' are domains such that
0D has at least three points and exactly k components, 2<k< @.
Surpose also that F 1is a compact set in D, consisting of at least
two points, and that K>1 . Then there exists a rositive number ©&
such that q(fF,3D')>56 and g(fF)>8& for every K-qc marrping
f:D->D'., M

21.15. Remark. This section is a slightly enlarged n-dimensional

version of Lehto-Virtanen {1, ppr. 76-821. See also Gehring [5]1.
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22. The linear dilatation

In this section we define the linear dilatation of a homeomorph-
ism and show that it is bounded if the mapping is qc.
Consider a homeomorphism f : D-»D'. Suprose that x&D, X# o,

f(x)# ®. For each r>0 such that Sn_/‘(x , 7)< D we set

I(x,f,r) = max 1£f(y) - £(x)1,
ly-xl=r
(22.1)
(x,f,r) = min 1£(y) - £(x)1 .
ly-xt=r

22.2., Definition, The linear dilatation of f at x is the

number

L f
H(x, f) = lim sup Lx,f,7)
r=0 e(x’f’r)

If x= w, f(x)# ©, we define H(x,f)=H(0O, fou) where u is

2

the inversion u(x)=x/1x1“. If f(x)= o, we define H(x, )=

H(x,uof) .

Obviously, 1<H(x,f)< w. If A:R"—>R" is a bijective
linear mapping, H(x,A)=H(A) for all x & R®, where H(A) is de-
fined in 14,1, If f is differentiable at x and if J(x,f)#0,
then H(x, f)=H(f'(x). If f 1is a K-qc diffeomorphism, (14.3)
and 15.1 imply that H(x, I‘)S_KZ/n for all xe&D. This inequality
need not be true if f is a K-qc mapping which is not differentiable
at x. However, we show that H(x, f) 4is bounded if f 1is qc. For

later purposes, we formulate the result as follows:

22.%. THEOREM., Suppose that f :D-» D! 1is a homeomorphism such

that one of the following conditions is satisfied for some finite K:
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(1) nu(f,) < KM( f;:) for all rings A such that AcD,
(2) Ku(f) < K.
(3) K (f) <K.

Then H(x,f) 1is bounded by a constant which derends only on n

and K.

froof, Let X, & D, and set Vo< f(xo) . Yterforming preliminary
inversions if necessary we may assume that xo;é oo;éyo . Choose
r>0 such that ]_Bn(xo ,T)C D\{f_/‘(oo)} and Fn(yo , L(xo ,f,r)c
D'\ {f(®)} . We abbreviate L=L(x ,f,r), (=« x,,f,r),
L' = L(y, , £ 1), - t(y, » el
we let A' be the spherical ring B (y,,L)\F%y .¢) and set

A=far,

, LY. Clearly ' =r. If ¢€<L,

Suprose that (1) holds. We write A=R(CO s C’l) where C =
-1 1
f En(yo ,¢) and Cq=Cf En(yo ,1). Then xOsCO y, sC,, and
the sphere S° '(x_,r) meets both C_ and C,. Hence, by 11.9,
A ! L \1-n
u(M,) >%, (1) . On the other hand, M(T,)< KW(F ) =Ky 4(log3) .
This gives an upper bound for I/ which is trivially true also if

¢=L. Letting r—=>0 we obtain
/}

n-T
H(x,, f) < exp ((Kwn_,l/aen(’l))n ).

Since (2) implies (1), it remains to prove the case (3%).
Choose x, such that Ix, -x =T and lf(x,l) - f(xo)l =¥¢. Set
E=an{x_ +t(x;-x ) 1821}, F=an0{x +t(x,-%x)1t<0}, and
T=A(E,F,A). Since &E,F)>r, 7.1 yields M(T)<m(a)/r"<
QnL'n/i‘n . On the other hand, 10.12 imylies M(r')?_ e loggL .
since M(T')<KM(T ), we obtain L/t < exp (&0, T'%/c ¢'™) , which

is trivially true if €-=1. Letting r-» 0 yields

-1
H(x, , £) < exp (KQ H(y,,f e .

Since Ko(f_q)gK , the part (2) of the theorem implies that

H(y , f"/‘) is bounded by a constant which depends only on n and K.
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Thus H(x, f) is also bounded by such a constant. M

22.4, COROLLARY, If f:D->D' 1is qc, then H(x,f) is

bounded. M

22.5. Remarks. 1. In Section 3% we shall prove the converse: If
H(x, f) 1is bounded, then f 1is qQc. Thus the linear dilatation can
be used to define qcty. Moreover, the rroperties KI(f)< ® and
Ko(f)< @ are equivalent.

2. This section is from Véaisdld [1]. A slightly different treat-

ment has been given by Gehring (2],



CHAFTER %, BACKGROUND IN REAL ANALYSIS

In the first two chapters, we have used only rather modest tools
of real analysis. However, for a deeper study of qc marpings one must
make use of more advanced methods, These will be presented in this
chapter. Proofs of the best known facts are omitted, especially in

Section 2%, The chapter consists of sections 23-%0.

2%, Set functions

Since all set functions we need are non-negative, locally finite
and completely additive, we shall use the term ''set function'" in

the following restricted sense:

2%.1. Definition. Let U be an oren set in R™. A set function
in U is a function which associates to every Borel set ACU a
number ¢(A)s§ﬁ1 such that the following conditions are satisfied:

(1) ¢(A)>0 for all 4.

(2) o(A)< ® if A 1is compact.

(3) 1Ir Ay, 45, ... 1is a sequence of disjoint Borel sets in
U, then @(UA;) = 3" o(A) .

A set function ¢ is absolutely continuous if for every €>0

there is § >0 such that m(A)<®& implies ¢(A)<E€e.

2%.2, THEOREM. Let ¢ be a set function which assumes only
finite values, Then ¢ is absolutely continuous iff ¢(4) =0 when-

ever A is a Porel set such that m(A)=0. M
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2%.%, Definition, Let A ©be a bounded measurable set in rR™.

The parameter of regularity of A 1is the number

m(4)
inf m(Q) ’

where the infimum is taken over all cubes QJA . By a cube we mean

r(4) =

a set {x1Ix;-a,1<h}.
For example, if A is a ball, r(4) =Qn/2n .

2%.4, Definition., A set function ¢ is U 1is said to have a

derivative ¢'(x) at xsU if

(x) = 1i o(A.)
t(x = m PR & S
¢ j;a) n(Ay)

whenever (Aj) is a sequence of closed sets such that xe;Ajc:U,

d(Aj)-a»O, m(AJ.))O, and inf r(AJ) > 0.
J

2%.5. LEBESGUE'S THEOREM. Let ¢ be a set function im U . Then

(1) ¢ has a finite derivative ¢'(x) a.e.
(2) o' 1is measurable in U.

(3) If A is a Borel set in U, o(a) > Jﬁw’dm .
A

(4) If ¢ 1is absolutely continuous, (3) holds with equality.M

23.6, THEOREM. Suprose that U 1s an oren set in R® and that

f:U—- ﬁq is a non-negative locally integrable function. Then
o(a) = [ram
A

defines a set function ¢ such that o'(x)=f(x) a.e.

Proof, It suffices to show that J\fdm = jXp'dm for every
A A

compact AcU. Choose an open set V such that ACV and such that
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V 1is a compact subset of U. Ry 2%3.2, ¢ 1is absolutely continuous.

The assertion follows from 2%.5.(4). M

2%.7, Definition. Let E be a measurable set in R". A point

x&R® is called a point of density of E if ¢é(x)= 1 where ¢

is the set function defined by mE(A) =m(En4).

2%.8. DENSITY THECREM. Almost every point of a measurable set

E 1is a point of density of E.

Proof, Let f be the characteristic function of E . Then

og(h) = ffdm. By 23.6, of(x)=f(x)=1 a.e. in E. M
A

24, The volume derivative

Suprose that D and D' are domains in R® and that £ :D - D!
is a homeomorphism. Then f maps every Borel set AcD onto a Borel
set. Denoting pf(A)==m(fA) we clearly obtain a set function p, in
D. By Lebesgue's theorem 2%.5, the derivative p%(x) exists a.e.

in D.

24,1, Definition. p%(x) is the volume derivative of f at x.

Thus

'(x) = 1im w
Fe r>0 ﬂnrn

From Lebesgue's theorem we obtain:

24,2, THEOREM. (1) pé(x)<co a,e,

(2) p; 1is measurable.
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(3) If A 1is a Rorel set in D, m(fA) > jpé dm . M
A

24 .%, Remark. We excluded the point at infinity in order that
Rr be locally finite. However, the above discussion arplies also to
the case where D, D'c En, since we may consider the restriction of
£ to D\{w,f (o)} . In particular, 24.2 is true also in this

general casse.

24 .4, THEOREM. If f is differentiable at x, pi'.(x) =1J(x, ).
M

24.5. THEOREM. Suprose that f :D-—> D' is a homeomorrhism and

that g: D’ ~>I.21 is a non-negative Rorel function. Then

[gan > [&(r) ppo) antx)
D! D

where we use the agreement ®-:0=0®=0.

Proof. We may assume that Igdm < ®. Choose €>0, set h=

]
gef , and consider the sets D

Ay = {xs D! (1+e)k§h(x)<(’l +e)k+1},
Aa) = {xe D! h(x)= o},
L {xe D1 h(x)=0}.

Since g(y)= @ if ys& fAL » m(ono) =0. PRy 24.2 this implies

fpfdm:O , that is, pi'.(x)=0 a.e. in A . Consequently,
A

® jh}l% dm = O.
LI
Since also fh}lfdm -0,
A

-
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we obtain

fhpi.dm = ¥ fhpi.dm <5 @ +e)k+/‘j}1£.dm .

Arplying 24.2 we further obtain

tfh}1£.dm§(’l+e:)z_—_(’I+z':)km(fAk)5(’I+z':)z fgdm
D keZ ks?Z fAk

< (1+€) fgdm.
Dt

Since € was arbitrary, this jroves the theorem. M

24,6, Definition. A homeomorrhism f : D-—> D' satisfies the

condition (N) if m(A) =0 implies m(fAa)=0.

24.7, THEOkEM. A homeomorrhism f : D -— D' satisfies the condi-
tion (N) iff m(fF)=0 whenever FcD is a compact set of measure

Z€ro.

Eroof, Suppose that A<D and m(A)=0. Then there is a Borel
set E>A such that m(E)=0. If m(fE)>O0, there is a compact
set F'CfE such that m(F')>0. On the other hand, m(f_/‘F')g
m(E) = 0. Thus the condition of the theorem implies the condition

(N). The converse is trivial. Mm

24 .8, THEOREM. Suppose that f:D - D' 1is a homeomorphism
which satisfies the condition (N). Then f maps every measurable

set ACD onto a measurable set, and

(24.9) n(ra) = [ppan.
A

If, in addition, £ satisfies the condition (N), pé(x)>0 a.e.

Iroof. Suprose first that A 1is a Borel set in D and that
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n(fA)< @ . Choose an open set U such that AcUcD and mn(fU) <wm.
By 23.2, pr is absolutely continuous in U. By Lebesgue's theorem
2%.5, this implies (24.9).

Next let AcD Dbe a Borel set with m(fA)= w. For r>0

choose a Borel set ArcA such that r<m(fAr) < ., Then

r < m(fAr) = fp%dm Sfpi.dm .
Ar A

which proves that fp%dm = @, Thus (24.9) holds for every BRorel
A
set A.

Next suppose that AcD is measurable. Choose a Borel set E< A
such that m(ANE) =0, Since mn(f(A\NE) =0, fA is measurable.

Moreover,

J\pi.dm = fpi.dm = m(fE) = m(f4a) .
A E

Thus (24.9) holds for every measurable A .
Finally, let T={xsDI p%(x) =0%}. By (24.9),

n(fr1) = [ppam = 0.
T

If £~ satisfies the condition (N), this implies m(T)=0. M

25. Fartial derivatives

Suprose that U 1is an open set in R® and that f:U—=>R" is

a mapping. If the i partial derivative of f exists at a point

xsU, we denote it by Bif(x) . That is,
f(x+rei) - £(x)

aif(x) = 1lim .
r>0 T

If f is differentiable at x, then all rartial derivatives exist,
and aif(x) = f'(x)ei . PFor an arbitrary mapping f: U—>R' we define

the partial Dini derivatives as follows:
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f(x+rei)-f(x)

37f(x) = lim sup
+ r>0+ T ’
f(x+rei)-f(x)
8i+f(x) = lim inf s
>0+ T
_ f(x+re,) - £f(x)
aif(x) = lim sup = s
r>0- r
f(x+rei)-f(x)
3, _f(x) = lim inf .
r>0- r

Thus aif(x) exists iff all these four derivatives are finite and

equal.

25.,1. THEOREM. The partial Dini derivatives of a continuous func-
tion f:U->R' are Borel functions.

Froof. We show that a;f is a Porel function. Let a&R' , and
set E={xsU| a;f(x) <a}., Then E= UEJ , where E;j is the set of
all x&U such that (f(x+rei) - f(x))/r<a-1/j whenever x+re; & U

and 0<r<1/j. Since f 1is continuous, each Ej is closed in U.

Hence E 1is a Borel set. M

25.2. THHOREM. Let f:U-—>R" be continuous, and let A; be
the set of all xsU such that aif(x) exists. Then A, 1is a Borel

set, and aif is a Borel function in A, .

m
Froof., We write f(x) = Z; fj(x)ej. Then each fj:II—>I§ is
'jc
continuous. If Aij is the set of all xs U such that aifj(x)

: . +
exists, A;=A;q0...0A; . On the other hand, xeA,, iff aifj(x)
= ai+fj(x) = aifj(x) = ai_i:i(x) < @ . The theorem follows now from

25.1. M
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26. ACL-mappings

26.1. Notation. We denote RE™! - {xsR% 1 x, =0}. Furthermore,
—_—— i i

F; is the orthogonal projection of R® onto Rg_q. Explicitly,

X = -X. .
Pl X-X ey

26.2, Definition. Let Q={x&R"1a;<X; <b;} be a closed
n-interval. A mapping f: Q-a-Rm is said to be ACL (absolutely con-
tinuous on lines) if f is continuous and if f is absolutely con-
tinuous on almost every line segment in Q , parallel to the coordi-
nate axes, More precisely, if Ei is the set of all stPiQ such
that the mapping tsé-f(x+tei) is not absolutely continuous on
fa; ,b;}, then m ,(E;)=0 for 1<i<n.

If U is an open set in R, a mapring f :U->R" is called
ACL if f1Q 1is ACL for every closed interval QcU.

If D and D' are domains in E", a homeomorphism f :D-» D'

is called ACL if £ 1 D\{® , f (o)} is ACL.
We omit the easy rroof of the following result:

26.%., THEOREM. Suppose that f is a marping of an open set
UcR® into R™. If every point x in U has a neighborhood V(x)

such that f1V(x) is ACL, then f is ACL. M

26.4, THEOREM. If f :U->R" is ACL, the partial derivatives

of f exist a.e. in U, and they are Borel functionms.

Froof., Fix i, and let E Dbe the set of all xsU such that
aif(x) does not exist. It suffices to show that m(ENQ)=0 for

every closed n-interval Qc U, Since f 1is continuous, it follows
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from 25.2 that E 1is a Borel set. We can thus apply Fubini's theorem
which yields

-1
n(20a) = [0, G0 nENQ amy_, () .
PiQ
If f 1is absolutely continuous on the segment Ir;/‘(x) ng, then
aif(x) exists a.e. on this segment, that is, m,‘(};q(x) NENQ)=0.
Since f is ACL, this implies m(EnQ)=0., Finally, aif is a

Borel function by 25.2. M

26.5. Definition. An ACL-mapping f£ :U ->R" is said to be
acL¥ s P21, if the partial derivatives of f are locally L¥-in-
tegrable. A homeomorthism f :D - D' is ACLP if the restriction of

f to D {w, f (o)} is ACLP .

26.6. Remark. For convenience, we have restricted ourselves to
continuous mappings. In the literature, one often assumes only that

f is locally or globally L'- or IP-integrable, and the class of

ACLp-mappings is denoted by W; or by H; .

27 . Smoothing of functions

Throughout this section we assume that f: R" —)R/‘ is a given
locally integrable function. Furthermore, ¢ : r® —)Rq is a con-
tinuous mapping with compact support. The suprort spt¢ of ¢ is

the closure of (x| ¢(x)#0}. The convolution fx¢ is defined by

£x000) = [2Gey) o) any) = [£(3) 0(x-y) an(y) -
RE RE
Thus fx¢ 1is a mapring Rn—)R/‘ . It is well defined, because sett-

ing A=max il we obtain
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[ ey o anGy) = [ 1eGey) o)1 an(e) < & f 1eGey) 1 an(y)
! Spt ¢ spt ¢

= Af 1f(y)1dm(y) < @ .
X-sTt ¢

27.1. THEOREM. f*¢ is continuous.

Froof. Since ¢ is uniformly continuous, |@(x) -@(Fl<e(1x-y1)

where €(r)-—>0 as r-—->0. Assuming that 1x-x 1 <1 we obtain

Lex(3) - T o(x) 1 < [ 1) 1100x) - 0(x,=3) 1 dn(y)

IA

e(lx-—xol )j 1£(y)1 dm(y)
E
where E=xO+En—sptcp. M

27.2. THEOREM. If sC', then f+9sC' and 0,(fx9) =230 .

Proof. Using the mean value theorem we obtain

f*(p(x+rei) - Fxe(x)
l - £43,0(x) l <
r

flf(y)l ‘ o(x+re;-y) - @(x-y)

- - 30(x-3) | am(y) -

[re@ ;00,5 - 8,00x-3)1 an(y)

where lxy-xl <r . The assertion follows as in the proof of 27.1. A

27.%, THEOREM., If fsILP, then

lim j 1f(x+y) -~ £(x)1Fdm(x) = 0.
y>0

kroof. Let €>0. Choose a>1 such that
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f!f(x)tp am(x) < € .
1x1>a-1
Set Iy(A) = Ilf(x+y) - f(x)1P dn(x) and assume that 1yI <.
A
Making use of the general inequality (b + C)PSZP(bP+ Py, valia

for >0,¢>0, we obtain

Iy(QBn(a)) < 2P J(If(x+y)|p + 1£(x)1P) am(x) < 2p+/l €.
1x1>a

By 2%.2, the set function Aw+> j 1f1¥am is absolutely continuous.
Hence there is r>0 such that Am(A)<r implies f!flpdm<e .

Thus Iy(A) <2P*1 ¢ wnenever m(A)<r. Applying Lusén's theorem to
f1B%(a+1) we find a compact set FcB®(a+1) such that f£IF is con-
tinuous and m(B"(a+1)\F)<r . Since F is compact, fIF is uni-
formly continuous. Consequently, there is 56 (0, 1) such that
1£(x+y) - £(x) 1P < e/m(F) whenever xsF, x+ysF, and 1yl<b6.

Assume now that 1y1 <& . Combining the above inequalities we

obtain
f 1£(x+y) = £(x) 1P dam(x) < f + I + f + j
xsF 1x+yi1<a+l 1x1<a+1 1x1>a
x+y&F X+yEF xgF

< €+2p+’l€+2p+’l€ +2p+’|€ = (1 +3,2p+’l) €. M

27 .4. We now choose a sequence of mariings ‘pj : Rn—>R/l such
that tne following conditions are satisfied:

/‘
(1) o.sC ,

J
(2) ‘P'jzoo
(3) st ec®™(1/5),
(4) j¢jdm=1 .

For examrle, after choosing ¢, , we may rut cpj(x) =3 cp,‘(;jx) .

This sequence will be kept fixed for the rest of this section.
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27.5. THEOREM. If feLP, then fxo;->f in P,

froof. Set A;j = jlf*cpj—flpdm. We must show that Aj—>0 as

j—=> . We first estimate the integrand by means of Holder's in-

equality.

#

1x05(0) - 2P = [ (2o () - 200 4(7) an() [P

IN

(J 126y - £ ey (3) am(y))P

IA

J 1£(x=y) - £(x)1P <Dj(y) dm(y) (I 2 am )P~1

i

‘[ 1£(x-y) - £(x1F ¢3(3) am(y) .

Integrating over x&R" and arplying Fubini's theorem (in which we
need the fact that (x,y)+> 1f(x-y) - f(x)lp(Pj(y) is a measurable

function in RPXR®) we obtain

A
J

IA

Jaweo [ 1269 - 260 1P 0y(3) an()

I

Josm ) [1eem - £GP = Jo 3 et anty)
171<1/35 171<1/3

Here g(y)—=>0 as y—=>0 by 27.%. Hence A, < sup g(y) = 0. &
d Tryi1<1/3

27.6. THEORKEM. Suppose that U 4is an oren set in R" such that

f1U 1is continuous. Then fakcpj —» f c-uniformly in U.

Proof, Let F ©be a compact set in U, and let €>0. BSince
f is uniformly continuous on F#, there is &, 0<&<d(F, dU),
such that 1f(x-y)-f(x)1<e whenever xsF and I1y1<5&6 ., We show

that If*cpj(x)—f(x)ISzr: if xsPF and J>1/6.

i

%0, (1) - 2601 = | 23D 0,(3) am(3) - 2030 05(3) am(z)

A

Ilf(X-y) - £(x)1 ¢j(y) dm(y) < e. M
171<1/5
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27.7. THEOREM.Suppose that U is an oren set in R and that
g: U—)R/‘ is ACLP. Then there is a sequence of functions gj . U->R/l
such that

(1) gysc’.

(2) g; - g c-uniformly in U.

(3) FPor each compact set FcU and for every 1<i<n,

aigj»aig in LP(®).

Froof, We show that for every compact F« U there is a sequ-
ence of C/‘—functions g :Rn—>R/‘ such that gj - g uniformly in
F and such that aigj-9'3ig in LP(F). (This is precisely what we
need in the sequel.) The theorem can be obtained from this result
by representing U as the union of an expanding sequence of compact
sets and by applying the diagonal process.

We cover F Dby a finite number of balls B,l g e s Bk such that

B,cU. Then V=B,U...UB_ is an open set such that V is com-

k
pact, FevVv, VU, and m(dV) =0, Define f : R® —)R/‘ by f(x)=
g(x) for xsV and by f(x)=0 for x#V. Then f is integrable,
and fiV=gtV 1is continuous. We can thus form the functions g.=

J

f*cpj. By 27.6, gj~>g uniformly in F. Ry 27.2, gjscq and

j+ On the other hand, 9;8=9;f in V, 3;f=0 in cv,

and m(dV)=0. Since Bigst in V, this implies aistP in

aigj =f%0;¢

R". Hence, by 27.5, aif*cpj ~>aif in LP, Consequently, it
suffices to prove that there is an integer J, such that 3if*¢3<x)
=f*ai¢j(x) for all j>j,, xeF, and 1<i<n. We show that
this is true if 3o vn/a(r, av).

Fix xeF, 1<i<n, and j>Jj,. Let @ be the closed cube

{x11x,1<1/3} for 1<k<n . Then St escq, X+Q<SV, and we

k
obtain by Fubini's theorem

030 (x) = faif(X-y) ¢;(y) an(y) = faig(X-y) 0;(y) am(y) =
Q Q
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1/3
J\dmn_q(z) j‘ aig(x—z—tei) ¢j(z+tei) dt .
F.Q -1/3

Since g 1s ACL, the function tba'g(x-z-tei) is absolutely con-
tinuous on [—1/3 ,1/3] for almost every zz;PiQ . For such 2z we

may integrate by parts, Observing that ¢j(b)==0 for be 3R, this

yields
1/3
aif*wj(x) =\fdmn_q(z) jﬁ g(x-z—tei)3i¢j(z+tei)dt
E. =173

1

i

Je)2,0,6) an@) = [£06e9) 3,0,3) ane)
@ Q

]

f*ai¢j(x) 'Y

27.8. Remark. By the same method we see that the approximations
can be in fact chosen to be c®. The converse of 27.7 is also true.
It can therefore be used as an alternate definition for ACLP-func-
tions. A third possibility is to use generalized (=distributional)

derivatives. See, for example, Smirnov {1, p. 288]1.

28. Fuglede's theorem

Roughly speaking, Fuglede's theorem states that an ACLP-function
is absolutely continuous on almost every path., We first give an

auxiliary result.

28.1. THEOREM., Burpose that E 1is a Roxel set in R® and that

fk :E-e»ﬁq is a sequence of Borel functions which converge to a

Borel function f:E-—)I'ZIl in LP(E). Then there is a subsequence

fi s f) s <. such that J 1f, -ftds -» 0 for all rectifiable
1 2 Y 3
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paths y in E, except for a family I such that Mp(l—)= 0.

Eroof. Choose a subsequence (fk ) such that
Ilfk -f1Pan < 27PI-7,
E 3
Set gj = Ifk -f1, and let [ ©be the family of all rectifiable
J
paths y such that tyltc¢E and Igj ds 40 . We show that
M (T)=0. Y
(M=o
Let rj be the family of all rectifiable paths y in E such
that Jgj ds >2"1j . Then ZJgJGF(f}) if we define gj(x) =0 for

x#E. Thus

Pi | P -J
Mp(rj)gz igjdm<2 .

®
On the other hand, Fe U rj for every is N. Hence
J=1

® ® . 54
M(T) <Y M (M) <y 27d =27+
p Tt R O M et

for every isN. Consequently, Mp( FYy=0.m

28.2. FUGLEDE'S THEOREM. Suppose that U is an oren set in R

and that £ :U->R" is ACLP. Let 1 be the family of all locally
rectifiable paths in U which have a closed subpath on which f is

not absolutely continuous. Then Mp( Fy=0.

Proof. By considering serarately the coordinate functions f,‘ N
cee s fm , we may assume that w=1, We exrress U as the union of
an expanding sequence of oren sets Uj such that each ﬁj is a
compact subset of U. Let ra be the family of all closed paths
vy& I such that lleU‘_j . Then [ > Urj , whence

(2]
mp(r) gg mr(l“j).

/l
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It thus suffices to prove that M (r) 0 for an arbitrary fixed J.
By 27.7, there is a sequence of C/‘-functions fk : U-—)R such

that £ —f uniformly in ﬁa‘ and such that 3,f —>093;f in

Lp(ﬁj) , 1<i<n. FPassing to a subsequence, we may assume, by 28.7,

that

I 19,f, -9,ftds = 0
Y
for all 1<i<n and for all rectifiable paths y in Uj except
for a family r; with Mp(r;)==0 . We show that r&c r;. which
will prove that Mp(r5)='0.
Surpose that vys r:_J AN r;) . Let 8=v°:10,c] ~>Uj be the normal

representation 2.5 of y . We write

n
B(t) =3 Bi(t)ey.
i=1
Since fkos is absolutely continuous, we have for every 0<t<c

% %
(28.3) £, (B(t) - £,(8(0) = f(fkos)'(u)du = jiﬂaifk(e(u)) gi(u)du.
0 01*

Here IBi(u)l <18'(u)1t =1 for almost every us [0,cl, by 1.3. As
k- @, the left hand side of (28.3%) tends to f(B(t) -f(B8(0)) . On
the other hand,

t t
[ & anaysiman- [ £ 3;(a) p)w) au
o 1i=1 o i=1
n t
< o Jrae8) -2 0B 1181 au
i=1 ¢
n
< Zjlaf -9;f1ds - 0.
i=1 Y

Hence (28.3) imrlies

t
£(8(6) - £(3(0) - [ 2 By2(aa) Biw) au
0 7
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As an integral, fe¢B 1is absolutely continuous. In other words, f
is absolutely continuous on Yy . Since vys ﬁicl_, this is a contra-

diction. M

28.4, Remark, Both 28,1 and 28.2 are due to Fuglede [11,

29. The theorem of Rademacher-Steranov

Let U be an open set in Rn, and let f:U->R" be a mapping.

In Section 5 we introduced the notation

L(x, £) = lim sup L0 - £GO1

h=>0 thi

The most general form (Saks {1, ». 311]) of the theorem of Rade-
macher-Stepanov states that if I(x, f)< o a.e., them f is dif-
ferentiable a.e. We prove a special case which is adequate for our

purposes.

29.1., THE THEOREM OF RADEMACHER-STEFANOV,., Suppose that U is

an open set in R® and that f:U->R" is a mapping which has the
following properties:

(1) f is continuous.

(2) The partial derivatives of f exist a.e.

(3) L(x,f)< ® a,e,

Then f is differentiable a.e.

Froof. Considering the coordinate functions of f separately,
we may assume that m=1, We may also assume that U 1is bounded.
Fix &>0, and let Ai denote the set of all points x in U
such that (f(x+h) - £f(x)1<i th! whenever Ih!1<1/i and x+hsU.

Since f 1is continuous, each Ai is closed in U . Moreover,
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AiCAiM and A= UA, ={xsU1L(x,f)< @}. Thus m(UNA)=0.

Hence there is an integer i  such that m(UNA{ )<56/2 . Next con-

o)
sider the functions

f(x+re.) - £(x)
gk(x) = max sup 1 - 3if(x)’ .
1<i<n O<iri<i/k t

Then g 1is defined a.e. in U, and gk—>0 a.,e, Since f is
continuous, the supremum can be taken over rational r . From this
and from 25.2 it follows that g, 1s measurable. Ry Egorov's
theorem, there exists a compact set Fc U such that m(UNF) <§/2
and such that g 'F—>0 uniformly. This implies that the functions
Bif | F are continuous. Set E:FnAi , and let H be the set of
roints xs E which are points of den(s)ity of E. Ry the density
theorem 23.8, m(ENH)=0. This implies that m(U\NH)<5 . We show
that f 1is differentiable at every point of H, which will Trove

the theorem,

Fix yes H, and set

n(B%(y , t) \ E)

e, (%) =
/‘
n(B%(y , t)
f(x+rei) - f(x)
e5(t) = max sup -9 1(x) |
1<i<n  O<ITI<t o
xsl
ex(t) = max sup 19, f(x) -3, f(y)1 .
3 - i i
1€i<n  1x-yI<t
x,y&F

Then 1lim ei(t) =0 for i=1,2,3%. Suppose that x is a point in
t->0 .
U such that Ix-yl=t<d(y,dU)/2 and t<1/2i_ . Set z =

(x/‘9¢"9xi9y

22 -x. If r<t, then Bn(zi,r)cBn(y,Zt)c:U and

. o
i+’l”"’yn)“ 0<i<n. In particular, 2z =y and

n(B%(z* , £) \E) < n(B%(y , 26D\ E) = €,(2t) n(B(y , 2t))

< m(B% 21, r)
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if r>2t eq(Zt)q/n . We choose now t so small that eu(t) =

2 (t+ e,‘(zt)"/n) <1 and put r=¢,(t)t. Then r<t and

n(B%(zl , r)NE)>0. We can thus find points uls®(zl,r)nE,

0<i<n. We may put u®=y . Setting vi=ui1, (xi--yi)ei , we have

viozhi a1 r, Moreover,
lf(vi)-f(ui"q)-aif(ui"q)(xi—yi)l < !xiayi|e2(!xi-yil) < te2(t).

Since

£) - £(y) = £0x) - £(u®) zn; CICHEEIC N &q (e(vh) - ety
1= 1=

we obtain

1f(x) - f(y) - s aif(y)(xi—yi)l < 1£(x) - £(uP)1 + ii If(ui)-f(vi)l
i=1 i=1

+ f vt - £ty S o et T (- )
i=1

L i-1
%:q Iaif(u )-aif(y)tlxi—yil

+

IN

ior-+2ni0r-+nte2(t)-+nte3(2t)

#

t «2n+1)i0e4(t)-+ne2(t)-+ne3(2t» = te(t),

where €(t)->0 as t-»0. Hence f is differentiable at y . M

29.2. Remark. The above proof is based on Stepanov [1].

320. Hausdorff measure

30.1. We first give the definition of the a-dimensional Haus-

dorff outer measure A‘&(A) of a set AcR®, a>0., Let r>0. We
consider countable coverings {A; 1is N} of A such that each

d(Ai) <r, Set
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Aa(A) = inf Zi: d(Ai)

over all such coverings. Then A:(A) is decreasing in r, and we
put

A*;(A) - lim AL(A) = sup J\g(a).
r->0 >0

We shall also use the fact that /12 , and hence /‘f’; , can be
defined by using only open coverings. This is due to the fact that
every set E with d(E)<r can be covered by an open set G such

that d4(G)<r . We state without proof some properties of A’; .

30.2. THEOREM. A’; is a metric outer measure., M

Hence A"; defines a class of measurable sets which includes

all Borel sets. If A is A’;—measurable, we write /\’;(A) = Aa(A) .
30.3. THEOREM. If a<8 and if /\‘;(A)< @, then /\E(A):O. M
30.4. THEOKEM. If ACR', then mi(a)=/U(A). m

More generally, ml‘l"(A) =278 nn/\’;(A) if AcRP, The rroof of
this equality is not quite elementary (Sard [1}). Since we are
usually only interested to know whether /\Z(A) is zero, positive

finite, or infinite, we give the following weaker result:
30.5. THEOREM. If ACR", then n'n/ZA’;(A)sm;(A)s QA5 .

Froof. Let {Gi 1isN} be an open covering of A such that
* n *
d(G;)<1. Then n*(A)<3” m(G;)< N 2 d(G,) . Thus n™(A)<
1 E
g AR < N AR .

Next let G Dbe an open set containing 4, and let r>0. We
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express (G as a countable union of closed cubes Qi such that
. . r n

d(Qy) <r and intQ; Nint Q= @. Then A (a) <3 a(Qy)” =

> nn/Zm(Qi)= nn/Zm(G). Thus /Q;(A) < nn/zm(G), which implies

A’;(A) < a2k a) . m

30.6. CORQOLLARY, If A<:Rn, then mn(A)= 0o iff Jﬂn(A)=:O , and
* _ . * _
mn(A) = o iff /&n(A) = ®. M

We next give some criterions for the absolute coatinuity of a
path vy : [a, bl - R™. We need two auxiliary results. Since the dia-
meter of a set does not increase in an orthogonal projection, the

following statement follows directly from the definition of /Q;:

30.7. LEMMA., If F 1is an orthogonal profection of R® onto a
linear submanifold of R", then Af(FA)< A5 (A) for all AcrR?,
a>0. M

30.8. THEOREM, If AcR” is connected, then d(A) < A%H(4).

troof. Let €>0, and pick a,bs A such that fta-bt>d(A)-€.
#e may assume that a=0, b=te,‘,t>0. Let P:Rnc-}R/‘ be the
rrojection Px=x,. Since A is connected, {0,tlcPA. Using
30.4 and 30.7 we obtain d(A)-€ <mi(Pa)= /5(PA) < A5(A) . Since €

was arbitrary, this proves the theorem. M

30.9. THEOREM. Suppose that vy : la, bl -»R® is an injective
path such that for every €>0 there is 6>0 with the following
property: Jﬂq(UYAi) <€ whenever A,,...,A7, are disjoint closed
subintervals of (a,b) such that }_ m(Ai) <%, Then y is abso-

lutely continuous.
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Proof. Let €>0, and let & be the number given by the con-
dition of the theorem. Suppose that A, = (ai yby3, 1<ick, are
disjoint subintervals of (a,b) such that Z: m(Ai) <% . By 3%0.8,
d(ya;) <A,(va;) . Thus

2 () -v(a)t <37 dalya;) < 37 Aa(vay) = A(uyay) < e

Since y 1is continuous at the end points, this implies that vy is

absolutely continuous on fa, bl . m

30.10. THEOREN. If y:A-—>R" is a rath, A,(1v1)<Ky).

Iroof. We may assume that y 1is rectifiable, that A is closed
and that y is a normal representation. Fix r>0. Subdivide A to
intervals A, ..., 4, such that each m(Ai)<:r. Then d(yA;)<
ﬂ(ylAi) = m(Ai) <r . Furthermore, J _ d(va) <5 m(Ai) =m(a) = L(v) .
Consequently,_Aﬁ(lyl)g {(y) . Letting r -0 yields_Aq(lyl)sﬂ(Y).

M

30.11. Remark., If y 1is injective, and Iy! 1is hence an arc,
then «41(‘Y|) =1(y) . In fact, for an arbitrary subdivision of A

to intervals A, =1lt, ,,t,3 we obtain by 20.8

o) =v(ey ) <7 alyay) <7 Aq(ag) = A0y 1) oom

30.12. THEOREM. Suppose that A= la,bl and that y:A—>R"
is an injective path satisfying the following conditions:
(1) There is a closed countable set EcA such that vy is
absolutely on every closed subinterval of ANE.
(2) JIY'(t)Idt < .
A

Then <y is absolutely continuous on 4.
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Froof. We show that <y satisfies the condition of 30.9. Let

e>0, and let A,l y see 3 A be disjoint closed subintervals of A.

k

Then AgN E has a countable number of comronents I;j . Since E is

countable, Aq(yE) =0 . From 30.10 and 3.% we thus obtain

Aqava,) = g Aq(vIy) 52:__ ifw'(t)u it = J 1y'(t)1at .

J 84

Similarly, Aq(yAi)g f!y'(t)l dt for all 1< i<k . Summing over

all i yields 8y

QAZ.IPIES fw-(t)t at .
UAi
Since the function A+> IIY'(t)I dt is absolutely continuous,
there is &>0 such thatA A,‘(UYAi) <€ whenever Y _ m(Ai) <H. M

30.1%. Remark, Theorem 30.12 holds also without the injectivity
condition (Saks (1, p. 2281). However, the injectivity of vy is es-
sential in 3%0.9. For example, the rath vy : U-1, 1] ~9R/‘, defined by
vy(t) =t sin (1/t), satisfies the condition of 30.9 without being abso-

lutely continuous.

30.14. THEOREM. Suppose that E cRP, N, 4(E)< @, and that
peN. Let F:RP 82" be the projection F¥x=x-x e , and let
A be the set of points y»s'Rn"/l such that EnP"/‘(y) contains at

least T ©points. Then

(n1

A5 _4(E) .

3
mn-—’l(A) < n-1

Iroof. For ks N we let Ak denote the set of points ys 4
for which there exist points x,, ..., Xp in EN P_q(y) sucn that
lxi—le >1/k for each pair xiij . Then AkCAkM , and A= UAk .

Consequently, mn*(A) = lim m*(Ak) . 1t thus suffices to show that
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Pm“(Ak)S 0,4 /L;_,‘(E) for an arbitrary fixed k.
Let {Gi {is N} be an open covering of & sucn that each
n-1 . .
d(G;) <1/k . We show that pw*(4 )< Q4 b a(6;) , which will

’l/k(E) <

prove the theorem, because it implies pm*(4, )< Qpq An-—’l

*
Qpq Ay (B
if ysAk, }_/‘(y) meets at least T sets G . Denoting by
g; the characteristic function of IG;, we thus have > gi(y)Zp
for all ysAk . Since each PGi is oren, there is an open set U

containing A, such that > gi(y)Zp for ysU. Hence we obtain

P m*(Ak)

IN

tm(U) Sf(z gi)dm = 3 fgidm -y m(IGi)

Rr® -1 RE -1

< np 4Ttare)™ < 0, T a)™ . m

%20.15. Definition. A set EcR® is said to have a g-finite
a-dimensional measure if E 1is the union of a countable number of

k3
sets E, such that Aa(Ei) < ®.

20.16. THEOREM. Suppose that E<R" has a o-finite (n-1)-dimen-
sional measure and that P Rn~>Rn"/‘ is as in %0.14. Then

EnP (y) 1is countable for almost every ysR° .

Iroof, Let A be the set of points ysRnJ‘ such that
EN P“/'(y) is uncountable. We exrress E as a countable union of
sets E; such that A*n__,l(Ei) < ®. Let A; denote the set of points
yeR" such that &, n¥7'(y) is uncountable. Since A=UA;, it
suffices to prove that m(Ai) =0 for all i . Let Aip be the set
of points ysR™ such that E; N F ' (y) contains at least p

points. Since Aic Aip , 30.14 imrlies

0
sk n-1 ,%
n*(4;) < 3 Ap_1(Eg) .



Since this holds for every psN, m*(Ai) =0. M

30.17. Remark. Theorem 3%0.14 is due to Gross (11.



CHAFTER 4. THE ANALYTIC FROFERTIES OF QUASICONFORMAL MAPFINGS

In this chapter we first show that the qc mappings have certain
analytic properties, for example, that they are ACL" and a.e, differ-
entiable. Next we show that conversely, certain analytic rroperties
imply that the mapping in question is gc. We thus obtain an analytic
characterization for gcty. This is the main result of the chapter.

We also give some applications. The chapter consists of sections

31-37.

31. The ACL-property

In this section we show that qc marpings are ACL. An auxiliary

result is needed:

31.1. LEMMA. Suppose that F is a compact set in R' and that
€>0 . Then there exists &>0 with the following troperty: For
every rs(0,5) there exists a finite covering of F with oren in-
tervals Aq y sae .Ap such that

1) m(A.l)=2r for 1<i<p.

(2) The center of A; belongs to F.

(3) Bach point of F Dbelongs to at most two A, .

() pr < m(F) +€.

Froof. Choose an open set G such that Fc G and m(G)<
n(F) +e . We show that &=d(F, CG) has the desired property.

Surpose that 0<r<&, For xsF set A(x)=(x-r,x+r). Then there
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exists a finite covering {A(xq), ..., A(xp)} of F such that

X,<...<x,. This covering satisfies clearly the conditions (1) and

1Y
(2). 1f A(xi) meets A(xi+2), we may leave out A(xi+q) and obtain
a covering which still satisfies (1) and (2). After a finite number

of steps, we obtain a covering, which we still denote by {A(xq), e o
A(xp)}, which satisfies (1), (2) and (3). We show that it also satis-

fies (4). Let g; be the characteristic function of A(xi) . Since

A(xi)c G, we obtain

2pr = 3~ m(a(x;) = 3_ jgidm = j: gy dm < Jr2dm = 2m(G)
1 1 G
R R
<2m(F)+2e. M

31.2, THEOREM, Let f :D-» D' be a homeomorphism such that
H(x, f) 1is bounded. Then f is ACL . Here H(x,f) is the linear

dilatation, defined in 22.2.

froof. Let &={x1a,<x;,<b,} be a closed n-interval in
nA{w, f"qﬁn)} . Consider, for examrle, the orthogonal projection
F:RE >R Rﬁ’q . For each Borel set Ac intPQ we set E,=Qn 4.

Here int means interior with respect to g1

. Since E, 1is a
Borel set, fEA is also a Porel set and hence measurable. Setting
¢(4) =n(fE,) we obtain a set function ¢ in intFQ. By Lebesgue's
theorem 2%.5, ¢ has a finite derivative ¢'(y) for almost every
y& int ¥Q . Fix such y . We shall trove that f is absolutely con-
tinuous on the segment J=Ey , which will rrove the theorem.

Let F ©be a compact subset of JNintQ . N¥e want to estimate
/z,‘(fF) . Choose H such that H(x,f)<H for all xs&D. Let
k>1/d(F, 3Q) , and let F, be the set of all x&F such that
0<r<1/k implies L(x,f,r)<H I(x,f,r) (see 22.1). Then
Fie© Fiean
pact. Pix k, and choose €>0, t>0. Let & ©be the number given

and F= UFk . Since f is continuous, each Fk is com-
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by Lemma 31,1 for the set Fk . Next choose r>0 such that r<
min (& , 1/k) and such that 1f(x)~-f(z)t<t whenever x,25@Q and

Ix-z1 <2r. Let A,, ...,A  be the covering of F, , given by 31.1.

1Y
Then A;<J for 1<i<p. Let A, be the open n-ball whose diameter
is A;. Then A c E; where R= f%n'q(y .T). Let x; be the center of
A; . Since x,&F, , we have L;<H Ki where L, = L(xi ,f,r) and

Jli = l(xi, f,r). Since d(fAi) <t , we obtain the estimate Ag(ka) <

> d(fa;) <2 > L; . By HOolder's inequality this implies
t n n_n-1 n n.n_n-1 n
A (fF )" <27 p Z:Li <2'H p Zzi

2P g (m’l(Fk) + e)n-’l

n-1
T
n

> o(fA) .

IA

QO

Since every point in fEy belongs to at most two fA, , 2 w(fa;) <
2m(fEB) =2 (R) . Observing that F CcF, we obtain

2" VWP (0, (F) + €)™ o(B)
0, n(B)

t n
AJ(EF)T <

Letting first r-»0, then € -»0, and then t-—>0, we obtain

-1 1
/l,l(ka)HSCcp'(y) m,l(F)n where C=20% Hnﬁn_,l/an . Since fF is
the 1limit of the expanding sequence of comract sets fF, , /L,‘(fF) =
lim A,‘(ka) . Thus

(31.3) AL € Co'(3) my()™ .

By 30.9, f is absolutely continuous on J . M
By 22.4 we obtain
31.4. COROLLARY. Every gc mairping is ACL. M
31.5. Remark. The corollary can be proved somewhat simpler than

the theorem. See Remark %#4.8.6. The above proof is an n-dimensional

version of Gehring (11.
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%22, Differentiability and the ACLP-property

In this section we show that qc maprings are a.e. differentiable
and ACL". We also prove a partial converse which yields an analytic
characterization for the outer dilatation Ko(f) of a homeomorphism.

The inner dilatation is postioned until Section 34,

32.1. THEOREM, Suppose that f : D - D' 1is a homeomorrhism such

that H(x, f) is bounded. Then f is differentiable a.e.

Froof., Theorems 31.2 and 26.4 irply that the partial derivatives
of f exist a.e. By 24.2, f has a.e. a finite volume derivative
p%(x). Consider x_ &D such that x# a)ff(xo) and p%(xo)< ® .
By the theorem 29.1 of Rademacher and Stepanov, it suffices to show
that L(xo., fl<w.,

Since H(xo,f) <, there are positive numbers r  and H
such that L(xo ,f,r)<H 2(x0 ,f, r) for O<r<r, . For all such

r we have 0 L(xo , I, r)ns a? m(fﬁn(xo , T) . Consequently,

(x_,f,o)" n m(fﬁn(xo , T)

o’ <
o - m(?n(xo , T)

Letting r—>0 yields L(x ,f)"< H pix )< ®. 2
32.2. COROLLARY. A gc mapring is differentiable a.e. M

32.%3. THEOREM. If f :D-» D' 1is a homeomorphism and if 1<K<
® , the following conditions are equivalent:

(1) Ky(f)<K.

(2) f 1is ACL, a.e. differentiable, and I1f'(x)1P <K 13(x, £)1
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Moreover, each of these conditions imrplies that f is ACL™,

Froof. Suppose first that (1) holds. Ry 22.3, H(x, f) is
bounded. By 31.2 and 32,1, f is ACL and a.e. differentiable. The
inequality 1f'(x)1®< K1J(x, £)1 follows from 15,2. Hence (1) im-
plies (2).

Next we show that (2) implies that f is ACIP®. Tet E be a
compact set in D\{a>,f_q(m0§ . Using 24.2 and 24.4 we obtain

Jreeomame sk [1ua, nrame) - & [ppeo e < kn(em) <o.
B E B

Since Iaif(x)lglf'(x)l at every point of differentiability, aif
s L"(E) . Thus f is ACL".

Assume now that (2) holds. To irove (1) we must show that
M(T)<KM(T') for every path family T in D. This is done by
modifying the proof of the corresponding result 15.1 for diffeo-
morphisms.

Let r; denote the family of all locally rectifiable paths
vye [ such that f is absolutely continuous on every closed subpath
of vy, and let. rm={ysr|a)slfoyl} . Then M(rm)=0 by 7.9.
Since f is ACLn, it follows from Fuglede's theorem 28.2 that
MmN ﬁi \T;)s 0. Hence M(FB)::M(T'). 1t thus suffices to prove
that M(T)<KM(T').

Let o's®(l'). Define Q:Rn—;-f?/‘ by e(x)=@'(x)L(x, f)
for xeD and @(x):O for xgD. If ysro, 5.% yields

fgdszjé'dszﬂ.
Y foy
Thus QGF(FO), which implies

M) < f@ndm = f@'(f(x))n L(x , £)% am(x)
D

fg-(f(x))n 1£1 (x) 1% dm(x) < K I@'(f(x))n 13(x , £)1 dn(x) .
D D
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By 24.4 and 24.5 this implies
m(ry) < ng'ndm.

Since this holds for every o' sF(T ), M(F)<EKM(T ). m
32.4, COROLLARY. A qc marping is ACL®. M

32.5. Remarks. 1. The proof for %2.1 is an n-dimensional version
of Mori I1}. Theorem 32.3% is from V8is#ld [1]. The condition (2) in
32.3 can be replaced by the following arrarently weaker condition
(Gehring [%31): f is ACL, and L(x, ffls Kp%(x) a.e., Indeed, this
implies IL(x,f)< @ a.e., and the a.e., differentiability follows
from the theorem of Rademacher-Steranov.

2. Pojarski has proved that every 2-dimensional qc mapring is
ACLF for some p>2 (Lehto-Virtanen {1, p. 2261). It is not known
whether an n-dimensional qc mapring, n>3%, must be ACIP for some

p>n.

3%, The condition (N)

In this section we prove that every qc mapping satisfies the
condition (N), defined in 24.6. The yroof is based on the following

result of Fubini type:

3%.1, THEOREM, Let U be an oren set in k', let A be a
Borel set in U, and let g be the characteristic fumnction of A,
Then m(A)=0 iff J‘gds:=0 for almost every closed rectifiable

rath vy in U. Y

Froof. Suppose first that m(aA)=0. Let [ be the family of
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all closed rectifiable paths y in U such that Lgds>0 . Define
Q:Rn'-)fi/‘ by o(x)= o for xesi and po(x)=0 for xgA. If

vye [, then Jst=a). Thus g& F(I ), whence
Y

M(r) < f@ndm = 0.

Conversely, assume that the condition of the theorem is satis-
fied. It suffices to show that m(QN A)=0 for an arbitrary closed
cube & in U. Let T be the family of all line segments J such
that J 1is parallel to the xn—axis, joins the opposite faces of @,
and m,l(Jn A)>O0. Since IJgds>O for all Js ', M(T )=0. (We
identify J with its homeomorphic representation.) On the other
hand, it follows from Remark 7.3% that MN(T ) =m(E)/h® where h is
the length of the edge of § and E 1is the union of all segments
J in [, Thus m(E)=0. Ry Fubini's theorem, m(QNhA)=0. M

3%.,2., THEOhEM. A gc mapping f :D—> D' satisfies the condition
(§).

Iroof, Let A be & Borel set in D such that m(A)=0. We
must show that m(fA)=0. Let g and g' ©be the characteristic
functions of A &and fA, respectively, and let r' be the family
of all closed rectifiable paths y in D' such that f g'ds>0.,
By %%.1, it suffices to prove that M(r') =0 . Since f Yis Qc, it
suffices to show that M(T )=0 where = £ T . Let [, be the
family of all paths yse T such that vy is rectifiable and f is
absolutely continuous on y. By 32.4, f |is ACIP. Hence it follows
from Fuglede's theorem 28.2 that M(r;) =M(T ). It thus suffices to
trove that M(r;) =0. If vs r; , 5.% implies

jg(x) L(x , £) 1dxt > Ig' ds > 0.

Y foy
Hence also jgds>0 for every vys [ . By 33.1, this implies M(r)
=0. M Y
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3%3.%., THEOREM, If f:D-»D' is gc and if A<D is measurable,

then fA 1is measurable, and

m(fa) = le(x, )1 dm(x) .
A

Moreover, J(x,f)#0 a.e.

Eroof. Since f is differentiable a.e., 1J(x, f)1=p (x) a.e.
The theorem follows from 24.8. M

3% .4, Remarks. 1. Ry Topology, it is impossible that there exist
points a ,bs D such that f is differentiable at both points and
such that J(a, f)>0, J(b, f)<0. Thus either J(x, f)>0 a.e. or
J(x,f)<0 a.e. In the first case, f is sense-preserving, and in
the second case sense-reversing.

2. The proof of %3.2 is from Vais#ld [1]. Another proof has been
given by Gehring [2]. Redetnjak [1] has proved that, more generally,

every ACLP-homeomorphism satisfies the condition (N).

34, The metric definition and the analytic definition for

guasiconformality

In this section we give two new characterizations for qcty. The
first one is called the metric definition, because it can be general-

ized to every metric space.

34 ,1. THEOREM. (The metric definition for qcty) A homeomorphism

f:D~»D' 1is qc iff H(x,f) 1is tounded.

Froof. If f 1is qc, then H(x, f) is bounded by 22.4. Converse-

ly, assume that H(x, f)<H< ® for every xsD. By *1.2, f is
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ACL, and by 32.1, f is a.e. differentiable., If f is differentiable
at x, then either f'(x)=0 or O<H(f'(x) =H(x,f)<H. In both

cases 1f'(x)1® < Hn_/‘

1J(x , £)1 . From 3%32.% it thus follows that

Ko(£) <H®T'. Since K (£7') =K,(f), it follows from 22.3 that
-1

B(y, f

clude that Kl(f) =Ko(f_/‘)< @ . Hence f is gc. M

) is bounded for ys&D'. Repeating the above argurent we con-

34.,2. Remark., From the above troof we obtain a somewhat stronger
result: For each K>1 and n>2 there is H such that H(x , f)sﬂ
for every n-dimensional K-qc mapping f . Similarly, for each H2>1
and n>2 there is K such that K(f) <K for every n-dimensional
homeomorphism f which satisfies the condition H(x, f)<H. The best

bound for K is HE]

, as easily follows from the analytic definition
34,4 and from (14.%). The best bound for H is more complicated.
However, the analytic definition and (14.3) also imply that H(x, f)

SK(f)Z/n a.e. and that this inequality is best rossible.

34 ,%, THEOREM. A homeomorthism f :D-»D' 1is qc iff one of the

dilatations KI(f) ,Ko(f) is finite.
froof. This follows directly from 22.% and 34.1. M

34 .4, THEOREM. (The analytic definition for the dilatations)
Supiose that f :D-» D' is a homeomorphism. If the conditions

(1) £ 1is ACL,

(2) f 1is differentiable a.e.,

(3) J(x,£)#£0 a.e.,

are satisfied, then

KI(f) = ess sup HI(f'(xD s Ko(f) = eSS sup Ho(f'(xD .
x&D xe D

If one of the conditions (1), (2), (%), is not satisfied, then
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KI(f) =Ko(f) = .

troof., The last assertion follows from 34.3%, 31.4, 32.2 and
3%.%, Assume next that f satisfies the conditions (1), (2), (3).
Then the formula for Ko(f) follows from 32.3%, If KI(f)< ®, 34.3
implies that f is qc. Thus £ also satisfies the conditions (1) ,
(2) ,(3), and
KI(f) = Ko(f_q) = ess sur Ho(f_q'(yD .
y&s D!
On the other hand, if J(x,f)#0 and if y=f(x), then £ ''(y) =
f'(x)_q. Hence Ho(f_q'(yD =H1(f'(xD . Since f and f_q satisfy
the condition (N) by 3%3.2,

ess sup Ho(f_q'(y» = €8S sur Hl(f'(xD .
y& D! xe D

This proves the formula for KI(f) in the case KI(f)< @ . Finally,
assume that KI(f)= ®. By 3.3, also Ko(f)= @ . From (14.3) we

obtain

1/(n-1) 1/(n-1) _

ess sup HI(f'(xD > ess sup Ho(f'(xD ®. M

= Ko(f)
xsD xeD

34,5. COROLLARY, If f:D-—> D' is a homeomorphism, then

1< Rp(f) < K™, 1 <k (8) < K0P

In particular, KI(f)==KO(f) for n=2. M

34,6, THEOREM. (The analytic definition for K-gcty) A homeomor-
phism f :D-»D' is K-qc iff the following conditions are satisfied:

(1) f 1is ACL.

(2) f 1is differentiable a.e.

(3) For almost every x&D,

1E (IR < 13(x, £)1 < KA (x)P
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Froof. From 34,4 it immediately follows that a K-qc mapping
satisfies the above conditions (1), (2), (3). Conversely, assume
that these conditions are satisfied., From 32.3 it follows that
Ko(f)sKI. By %4.3, f 1is qc. Hence J(x,f)#0 a.e., and the

inequality K- (f) <K follows from 34.,4. M
I L

34.,7. THEOREM. Suprose that f :D-» D' is a homeomorphism such
that every point in D has a neighborhood U such that KI(fIU)Sai
and K,(f1U)<b. Then K (f)<a and Ky (f)<b.

Froof. By 26.3, f 1is ACL. The theorem follows from the ana-
lytic definition %4 .4. M

%34.8. Remarks. 1. As in 3%2.5, we can replace the conditions (2)
and (3) of 34.6 by the single condition L(x, f)"/K<pp(x) <
K i(x, £)® a.e., where L(x, f) = lim inf 1f(x+h) - £(x)1/1h1 .

2. One can also replace the cong;féons (1) and (2) in 34.6 by
the requirement that f be ACIP. Py f'(x) we then mean the linear
mapping defined by f'(x)ei= aif(x) . This is possible, because
every ACL™-homeomorphism is differentiable a.e. (Vdisdld {3]).

3, If n=2, every ACL-homeomorthism is differentiable a.e.
(Lehto-Virtanen {1, p. 134). Hence, the condition (2) of 34.6 can
be completely left out. Moreover, (%) reduces to the single inequal-
ity If'(x)|2§ K1J(x, £)1. It is not known to the author whether
(2) can be omitted in dimensions n> 3.

4, It is natural tq ask whether 34.6 is true without the condi-
tion (1). We show by an example that this is not the case. Let
g [0, 11 ﬁ>Rq be a continuous increasing function such that g(0) =
0, g(1)=1, and g'(t)=0 a.e. See, for example, Nunroe [1, p.
1931, Let D be the open unit cube 0<x; <71, and set f(x) =

(x4 + 8(xq) v Xp e ,xn) . Then f maps D onto the n-interval
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O<x,‘<2, O<xi<’l, 2<i<n. Moreover, f 1is differentiable a.e.,
and 1f'(x)1 = (£ (x) =d(x,f)=1 a,e. However, f is not qc,
because it is not ACL. Another example is given by the mapping f(x)
=(xq-+g(x2) » X5 9 eee ,xn).

5. We proved in %2.3% that Ko(f)gKi is equivalent to the con-
ditions (1), (2) and the first part of (3) of 34.6. It is therefore
natural to ask whether (1), (2) and the second part of (3) imply
KI(f)SJ(. The following examrle, tointed to the author vy O, Martio,
shows that this is not the case. Iet £ be a Cantor set (totally
disconnected perfect set) in [0, 1] such that mq(E)>'O. Define

h(t)=0 for teE and h(t)=1 for tel0,1]1NE. Setting
t
e(t) = [n(w au
0

we obtain an absolutely continuous strictly increasing function

g: [0, 1] —R'. Let D again be the unit cube of R", and set f(x)
=(8(xq) y %54 «ve s %)) . Then f is an ACL-homeomorphism of D.
Since g'(t) =h(t) a.e., either L(f'(x)= J(x,£f)=0 or L(£'(x)
=J(x,f)=1 a.e. in D, Thus f satisfies (1), (2), and the
second tart of (3) with K=1. However, f is not qc, since
J(x,f)=0 in a set of positive measure.

6. We describe an alternate way of proving the analytic proper-
ties of a qc mapping. This proof makes use of neither the theorem of
Rademacher-Stepanov nor the linsar dilatation. Suppose that
f:D-»D' 1is K-qc. First one can show by a method of Ffluger 11
that f is ACL. The n-dimensional version is given in Vaiszlg [31.
In fact, we obtain an inequalityyof the tyre (31.32). By a method
of Agard [1) one can then show that f is not only ACL but in fact
ACLP. This implies that f is differentisble a.e. (Remark 2 above).

The proof arrangerent given in these notes is from VAisdld [1].

A slightly different proof has been given by Gehring z].

7. Pfluger's ACL rroof makes only use of path farilies associ-
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ated to right cylinders, such as in Example 7.2. This is also the
case with Theorem 15.2. This leads to the following result: A homeo-
morphism f :D-»D' is K-qc iff M(T)/K<M(T )<KM(T) for every

path family 1 associated to a right cylinder in D.

325. EBxceptional sets and the reflection principle

It is often convenient to construct a qc mapping piecewise. The
Question arises whether such a marping is really qc. We prove a gene-
ral result which applies to several important cases. As an applica-

tion we prove the reflection rrinciple for qc mappings.

35.1. THEOREM. Suppose that f :D-»D' 1is a horeomorphism and
that E«<D is a set such that E is closed in D and such that
E has a o-finite (n-1)-dimensional measure. Suppose also that every
point in DNE has a neighborhood U such that KI(fIU)Sa and
Ko(f1U)<b. Then K;(f)<a and K (f)<b.

Proof, Since E has a o-finite (n-1)-dimensional neasure,
mn(E)==O . From the analytic definition 34.4 it thus follows that
at almost every point xeD, f is differentiable, J(x,f)#0,
and HI(f'(xD <a, Ho(f‘(x))SIJ. Hence it suffices to prove that f
is ACL.

Let Q be a closed n-interval in D\ {® ,f_q(GO} . Let
P Rn-a»Rn_q be the orthogonal projection, and set Jy::QflP_q(y)
for ysPQ. By symmetry, it suffices to prove that f is absolutely
continuous on Jy for almost every ysIQ.

Let A denote the set of all ysFY such that Jyf1E is un-
countable. By 30.16, mn_q(A)==O . Next let B Dbe the set of all

y & PQ such that J\Ianflqu is either infinite or not defined.

Iy
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We show that mn_q(B)==O . By Fubini's theorem it suffices to show
that 19 f! is integrable over Q. Since 13 fGXNT<IE ()<
b 1J(x, £)1 =bp£.(x) for almost every x&D, Theorem 24.2 implies
flanflndm <bm(fQ) < ®.
Q
Thus lanfln is integrable over Q. Since m(g)< w®, also Ianfl
is integrable over . Hence mn-1(8)= 0.
We choose a sequence of closed n-intervals Sq ,82 y +«s« Such

that S; CDNE and D\E=Uintsi. Let C, ©be the set of all

i
y&sFq such that f is absolutely continuous on SiflP_q(y) . Since
f is ACL in D\E, mn_,l(Ci)=O for isN. Setting F=AUBUC U
CZIJ... we thus have mn_q(FO =0, We show that f 1is absolutely
continuous on Jy for every yePQNF. Since fIJ& is an injective
path (we identify Jy with an interval of Rq), we may use 30.12.
Since ygEA, Jyn E is countable, Since Yy E£B, Ianfl is integrable
over Jy . Finally, let J ©be a closed subinterval of Jy\\E . Then
J can be covered with a finite number of n-intervals Si . Since
y’é(ﬁh, f 1is absolutely continuous on every Jf1Si , and hence on

J . From 30,12 it follows that f is absolutely continuous on Jy M

We next give the reflection principle. Suppose that f :D-— D!
is a gc mapping and that S 1is a srhere or a hyperplane. Sugprose
also that @£ Ec SN3D and that E is relatively open in both S
and OD. Let g:R"—»R" be the reflection in S. We further
assume that DnRgD=¢ . It is easy to verify that DUEBUgD is a
domain. Let S*', g', and E' have the corresponding meaning with
respect to D!, Suppose also that E' is the cluster set C(f,E).
From 17.17 it follows that f has a unique extension to a homeo-
morphism f¥, DUE-»D' UE', We extend f¥ to a homeomorphism

f,:DUEUgD—>D' UE' Ug'D' by setting f,(x)=g'(£(p(x)) for

/‘
xegD. We say that f_is extended to f,_ by reflection.
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35.2. THEOREM. (The reflection rrinciple) If a gc mapping f
is extended to fq by reflection, then fq is qc and has the sanme

dilatations as f.

Proof. Since g and g' are conformal, fqi1eD has the same
dilatations as f . Since S has a o-finite (n-1)-dimensional meas-

ure, 55,1 implies that KI(fq) =K1(f) and Ko(fﬂ) =Ko(f) I

35.2. THEOREM. et n>3, let D Dbe the half space xn>(),
and let f:D-»D be K-~qc. Then the induced boundary mapring
£, 0D-» 0D is an (n-1)-dimensional K,-qc mapping, where XK,

depends only on n and K.

Proof. We extend f by reflection to a K-qc mapping fqr
B® - B2, Suppose that xosaD. Ry 34.2, H(xo,fo)SH(xo,fq)SH
where H depends only on n and K. Hence, by 34.2, K(fo)ngn_Z.

M

We next prove a local extension theorem for qc mappings, which

will be needed in Section 40.

35.4, Definition. (cf. 17.5.(5) A domain D 1is said to be

locally guasiconformally bi-collared at a boundary point b, if

there is a neighborhood U of b and a qc marping g : U= B" such
that g(UND) is the upper half ball E..

(Prom this it follows that g(UN3D) = B 1.)

35.5. THEOREM. Suppose that D and D' are domains which are
locally qclly bi-collared at points bsdD and b' e dD', respective-
ly. Suppose also that f :D-»D' is a gc mapping such that b's
C(f ,b) . Then there are neighborhoods U of b and U' of b’

and a gc mapping h:U-»U' such that h(x)=f(x) for xsUND.
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Iroof, By 17.10 and 17.15, ©b'=1im f(x) . Choose a neighborhood
V' of b' and a qc mapping g' ! V! :;-;B such that g'(v'aD') =BI+1 .
Next choose a neighborhood U of b and a qc mapring g: U B"
such that g(UND) =B, and f£(UND)CV'. Since D and D' are
locally qclly collared at every point of UN3D and V' N3D',
respectively, it follows from 17.17 that f can be extended to a
continuous injective mapping f*¥ :DU(UNAD) D' U (V' NAD') ., Then
fi=g'ofo g_/‘ is a qc mapping of Bli onto a domain GCBi1 , and

fj{= g'o f¥s g"/' is a continuous injective extension of f,‘ to

n-1 n-1

-1 . : :
n is an open set in B . ¥e can

Bri UB . By Topology, f‘le
therefore extend f,l by reflection to a qc mapping f2 : B0 > G,l .

Then h= g"'/'ofzog : U—>g’_qG,‘ is the desired mapping. M

325.6. Remarks. 1. Theorem 35.1 is an n-dimensional version of
Strebel [11.

2. Theorem 35.3 is due to Gehring [2?]. Gehring has recently
rroved that KI(fO)SKI(f) and KO(fO)SKO(f), and that these bounds
are sharp. The case n=3% is treated in Gehring-Vaisdld {2, p. 29].
Ahlfors [1] has rroved the following converse of 35.3: If n=2, then

every qc mapping f_: R® > R" can be extended to a qc maprying f:

§n+’l =n+1

-> R . It is not known whether this is true for n>3 . It has
an important analogue in the case n=1, yroved by Reurling-Ahlfors
[11. One can also consider the qcty of marpings on boundary surfaces

(Gehring-Viaisdld [2, p. 211).

36, The ring definition for quasiconformality

%6.1. THEOxEM, If f:D->D' is a homeomorphism, then

M(r,) M(r,)
Ki(£) = sup ) Ko(f) = sup :
M( r;) M( rA)

where the suprema are taken over all rings A such that AcD and
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m(r;)>o.

Proof. Applying the second inequality to the inverse mapping
f"q gives the first one. Therefore it suffices to rrove the formula
for Ky(f). Set K=sup M(T,)/M(T,). Since K,(f)>K trivially,
it remains to show that Ko(f) <K.

We may assume that K< ® . PRy 22.3, H(x,f) is bounded. Ry
the metric definition 34.1, f is qc. Let X, be a point in D
such that f is differentiable at x, and J(xo ,F)#0. Ry the
analytic definition 34.4, it suffices to show that I1f'(x )1"<
K IJ(XO , I,

Ferforming a preliminary similarity transformation we may as-

sume that x0=0= f(xo) and that f'(0) is given by f'(O)eizaiei

where a;>a,>...>a >0. We must show that afll_qs Kay...a .
Choose h>0 and &>0 such that the closure of the interval Y=
{x1 1xq1 < f)h/a,l » 1x 1< h+bh/a; for 2<i<n} 1is contained in D.
Let Q be the closed (n-1)-cube {x1!1x,=0, Ix;1<h for 2<i<n}.
Then A=Y\NQ is a ring with boundary components Q and 3Y. Let
I, be the family of all vys r; such that 1yl is contained in

the interval {x10<x,<&h/a,, Ix;1<h for 2<i<n}, and let
5 ‘be the symmetric image of [} in x,=0. Then L eand r‘2

are separate, and riC r; . Ry 6.7 and 7.2 we obtain

) = 2B gl sgn-1

M) > M) + u(r "

2
Next consider the ring A'=fA. Fix 0<5<1, and choose

0<e<d/2. Next choose h such that 1f(x)-f'(0)x1<eh for

xeY . Then the distance between the boundary components of A' is

at least (6-2e)h . On the other hand, A' is contained in the in-

terval {x | 1x 1< (6 +€)h, Ix; 1< (ai+6 +e)h for 2<i<n}. Using

the inequality M( rp SKM(Q,) and 7.1 we obtain
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af!l_/‘ (6 -2¢)" < g 527 (& +€) (a2+6+e) ...(an+6+e) .

Letting first € -—>»0 and then & -»0 yields afll"' <Kay...a . M

36.2, COROLLARY. A homeomorrhism f :D-»D' is K-qc iff the

double inequality
M(T,)/K < M(T,) < KN(T,)

holds for every ring A such that AcD. M

%26.3. Remark. Theorem %6.1 is an n-dimensional version of

Gehring-Vaissala [11.

37. Quasiconformality of a limit mapping

Suppose that fj: D> Dj is a sequence of K-qc maprings con-
verging c-uniformly to f: D— R®. In Section 21 we proved that f

is either constant or a homeomorphism onto a domain D'. In this
section we complete the discussion by showing that in the latter

case f is actually K-gqc. The yroof is based on the ring definition
36.1. We need some knowledge on the fact that M(f&) depends con-

tinuously on the ring A . A complete result is given in Gehring

I3, p. 367]: we prove only what we need.

37.1. THEOREM. Suppose that C, and C, are disjoint non-

degenerate compact connected sets in R-. Then

M) = 1lim M(T(2)) ,
r>0

where [ =A(C ,Cq,RY) and [(r)=a(C, +rB",cq+rE", R .

froof. Set [ (r)=a(c +18", ¢, ,R%) . We first prove that if
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s F(I) and if @sL", then for every g>1 there is r>0 such
that g s F( r;(r)) . Suppose that this assertion is false. Choose
rO>O such that 2r0<d(CO) and 2r0<d(CO . C,‘) . For O<r<r0
choose a rectifiable vy& r:)(r) , v:la,bl »R", such that y(a)s

Co+an, Y(b)sc,‘ , and
Igds < 1/q.
Y

Fut '71 =A(Co , Iy! , B®) . Then there is x eCO such that d(x, ly1)

o
<r. If r<t<r_, the sphere Sn_/'(x ,t) meets both C0 and
1yl . BHence 10.12 implies that M(Cl)zcn log(ro/r) . Let v,
la, ,b,] >R" be an arbitrary rectifiable path in [, such that
Y’l(a’l)sco and v,(by)s Iyt . Then vy,(b,)=v(t ) for some ¢t &
fa, bl. Define a: [a;,by+b-t 1 >R by a(t)=v,(t) for a,<
t<b; and alt) =y(t+t -b;) for by;<t<b+b-t . Then as r,
whence

1< f@ds SJ‘st+Ist <Ist+1/q.

« Yq Y Yq

Thus q@/(q-1) & F([) , which implies

T
[o] q \n n
eploe 2 < M) < (Zp™ et am .
Letting r-»0 yields a contradiction.
If 0<t<r, then (cl(t)cl(r), whence M(T)<M(T(t)<
M(T(r) . Hence the limit T =1im M(T(r)) exists and p>M(F ).
r>0
Suppose that p>M(l ). Choose psF(I) and g>1 such that
qznj‘gn dm < p.
By the first part of the proof, there is rO>O such that qos
F( r:)(ro)) . Replacing C, by €, and ¢, by € +r]§n, we can simi-
larly find r, such that O<r,;<r, and ngsF( Rro . rq)) where
r(ro yTq) = A(CO+ rOEn sy Cq+ r,l?in , R®) . Since EIPRS r(ro s Tq)
we obtain

p < M(r(r,‘)) < Iﬁi(r(ro y ) £ qznfgndm <p,
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which is a contradiction. M

%%7.2. THEOREM, Suprose that f;j : D—)Dj is a sequence of qc

mappings which converge pointwise to a homeomorphism f :D-—>D'.

Then

KI(f) < 1i.m inf KI(f,j) ) Ko(f) < 1i.m inf Ko(fj) .
Jd —>wmw Jj =

Proof. We first prove the inequality for KO . We may assume
that 1lim inf Ko(f,j) =K< @w. WNe may also assume that w gD and
o g D', because we may consider restrictions of f;j to
D\ {o0 , f"/‘(oo)} and then use 17.3. Let A be a ring such that
KcD and M( M) >0. set Aj = fjA and A'=fA. Ry the ring defi-
nition 36.1, it sufficies to show that M( Q)SKM(Q,) .

Choose €> 0, FPassing to a subsequence we may assume that
Ko(fj)<K+e for all j. By 21.1 and %4.5, the convergence is
c-uniform., Let BO y B,l be the boundary components of A, and let

A' =R(C],C}) with fB;C ci . Choose >0, Since f.-»f uniform-

J

ly in A, there is j such that ijchBo+r§n and fB, c

fB, + rB®. Since T c M(r)=a(Cc' +rB*,C) +rE®, R®) , we obtain
1 A o 1

M(Ty) <Kop(fy) M(Q_)J<(K+e) M(T(r)). As r—>0, 37.1 and 11.3 yield
M(T) < (X+e€) M(Q,) . Since € was arbitrary, this rroves the in-
equality for KO .

We next turn to KI . We may assume that 1lim inf KI(f,j) =K<
® . Choose a domain G such that GcD', By 34.7, it suffices to
Trove that KO(f"/‘IG) <K. By 21.10, quIG are defined for large

/l

j, and fg > uniformly in G . Hence, the first part of the

troof implies Ko(f_qu)Slim inf K (quIG)SK .M

0
37.%3. COROLLARY. Suppose that f;j :D—)Dj is a sequence of
K-gc maprings which converge pointwise to a homeomorphism

f¢:D—>D'., Then f 1is also K-gc. M
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27 .4, COROLLARY, The word ''homeomorthism' can be replaced by
"K-qc mapping" in the results 21.1, 21.3%, 21.5, 21.7, 21.9, and
21.11. M

37.5. Remark. Theorem 37.2 was first proved by Ahlfors [11 in
the case n=2, and by Gehring~[3] and Vdis#lsd [11 in higher
dimensions.

A purely analytic proof, which applies also to the larger

class of quasiregular maprings, has been given by ReSetnjak [z1.



CHAITER 5. MATIFING FPROBLEMS

In this chapter we shall consider two problems: Given two do-
mains D and D' in ﬁn, does there exist a qc mapring f:D—>D'?"?
Next, if the answer is affirmative, how small can the dilatations of

such a mapping be? The chapter consists of sections 38-41,

38. The coefficients of quasiconformality

28,1, Definition, Let D and D' Dbe domains in ﬁn, homeomor-

phic to each other. The inner coefficient of quasiconformality of D

with restect to D' is the number KI(D ,D') = inf KI(f) over all

homeomorphisms f : D->D'. Similarly, the outer coefficient is

Ko(D, D') = inf K (f) . If D' = R?, we abbreviate K (D ,Bn)==KI(D)
and K, (D ,Bn)==KO(D).
Obviously, ’ISKI(D , D), KO(D ,D')< @, and

(%38.2) K;(D,D') = K5(D', D)

The coefficients are finite iff the domains are qclly equivalent.

From 34,5 we obtain
- -1
(38.3) K (D,D') < Ky(D, D)™, Ky(D,D') < Kp(D, D),

A mapping f:D-»D' is extremal for K; or Ko if KI(f)z
KI(D ,D') or Ko(f)= KO(D, D') , respectively. The extremal mappings
do not always exist. If they exist, they are not necessarily unique.

However, we can prove the existence in the following special cases:

38.4, THEOREM, The extremal mappings for KI and K, exist in
the following cases:
(1) D or D' is a ball.

(2) ©OD has exactly k components where 2<k< w.
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Froof, (1): By (38.2), we may assume that D' = B%. We prove that

there is an extremal mapping for KI ; the rroof for K is similar,

0
We may assume that KI(D)< ®. Fix x 6D and choose a se-
quence of qc mappings f(,j :D—>F%, such that KI(f,j) —;KI(D) . Since

B® can be marped conformally onto itself such that a given point

is mapped into the origin, we may choose fj so that fj(x0)=-0.
By 19.3% and 20.5, {fjl je N} 1is a normal family. Fassing to a sub-
sequence, we may therefore assume that fj—; f c~uniformly in D.
By 21.11, f 1is either a homeomorthism onto B® or a constant

c & 3B”. The latter case is impossible, because f(xo): 0. From %7.2
it follows that KI(f)SKI(D) . Hence KI(f) =KI(D) .

(2): We again prove the existence of a mapping f :D-»D' such
that KI(f)==KI(D » D') . We may assume that KI(D, D')< @ . As in
the case (1), we can find a sequence of Qc mappings fj: D—> D' such
that KI(fj) - KI(D, D*) and such that fj — f c-uniformly. If 3D
contains at least three points, it follows from 21.11 that f 1is a
homeomorrhism onto Df. By 3%7.2, KI(f)ngI(D ,D'). If 8D consists

of exactly two points, there is a WObius transformation g:D-—D',

and hence K;(D,D')=1=K;(g). &

38.5. Remark. The proof of (2) shows that the extremal maprings
exist if it is not possible that a sequence of K-qc mappings
fj:AD—> D' converge c-uniformly to a constant. In addition to the
cases mentioned in 21.11, this haprens if the domains have certain
homotopy properties, for example, if D and D' are tori in Ri.
The extremal mappings between tori have been recently considered by

Gehring [71.

38.6. THEOREM, If n>3%, then KI(D)z’l (and KO(D)z’I) iff

D 1is a ball or a half stace or the exterior of a ball.
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Froof., Let f:D->B" be a qc mapping such that K;(f) =K. (D).
By the theorem of Gehring and Re$etnjak (Remark 1%.7.2), which is not
proved in these notes, KI(f) =41 iff f 1is a MObius transformation.

M

%8.7. Remarks, 1, If n=2, the Riemann mapping theorem imrlies
that KI(D)= KO(D) =1 whenever (D 1is & non-degenerate continuum.
Thus there is a striking difference between the cases n=2 and
n>3%,

2. The author does not know whether KI(D, D') =1 implies that

D can be mapped onto D' by a conformal mapring.

38.8., THEOREM, Suppose that (Dj) is a sequence of domains in
£® and that D 1is a domain in B® such that the following condi-
tions are satisfied:

(1) ©OD has at least two points.

(2) 1If (Djk) is any subsequence of (Dj) , then D is a com-

ponent of ker D. .,
k>o Yk

Then

K7(D) < lim inf Ky(D)), Ko(D) < 1im inf Ko(Dy) .
joo jom

Froof, We prove the first inequality, the proof for KO is sim-
ilar, We may assume that 1lim inf Kl(Dj)s:K< ® . Passing to a sub-
sequence, we may assume that KI(DJ)SI(+1 for all Jj, and that

there is a point x which belongs to D and to every Dj . Choose

o
two distinct toints a,bsdD and their neighborhoods U,V such

that UnV-=@. Passing again to a subsequence we may assume that

.

un aDJ. A@#AVNA3D, for all J. Choose extremal maprings f;j :

3
n o = i L) >
B - Dj such that KO(fj)"KI(Dj) and fj(O) x, . Since q(BDJ) >

q(U,V)>0, it follows from 19.2 and 20.5 that {fjl jeN} is a
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normal family. Fassing once more to a subsequence, we may therefore
assume that fj -» f c-uniformly in B2, since £(0) :xosker Dj ,
it follows from 21.9 that f is a homeomorphism onto a component of
ker D,j , hence onto D. From 37.2 it follows that KI(D)SKO(f)S
lim inf KO(f,j) = 1im inf KI(D,j) . M

38.9. Example, Let D. be the cylinder x§+x§<32 ) |x5| <1

J

in RE, and let D be the domain between the planes Xz = +1. Then
the conditions of %8.8 are satisfied. By 17.2% we obtain 1lim KI(Dj)z
lim KO(D,j) = . A direct proof for this is given in Gehring-V8isala
{2, p. 411.

28,10, Definition. A domain DcR® is called raylike with
vertex at vedD, v£ w, if v+t(x-v)sD whenever xsD and
t >0 . For example, the half srtace Xq > O, the quarter space X, >0,

x2>O s, etc. are raylike with vertex at the origin.

38.11. THEGREM. Suppose that D and G are domains in R°
such that G 1is raylike with vertex at v . If v has a neighbor-
hood U such that UnND=UNG, then KI(D)EKI(G) and KO(D)z
KO(G) .

Froof. Define f,j : ?® - r" by fj(x) =V + j(x-v) . Then f,j is
D) for every subsequence (f, ). Hence it

Iy Ik

follows from 3%8.8 that KI(G) < 1lim inf Kl(f,jD) :KI(D) , and simi-

conformal, and G =ker (f
larly for the outer coefficient KO(G) . M

38.12. Example. Let n>3, let D be the cube 0<x,<7, and
let G be the quarter space x,>0, X5, >0 . Then the conditions of
%28.11 are satisfied with v = e5/2. Hence the coefficients of D are

not smaller than those of G. We shall give a direct proof for the



131 38,13
inner coefficient in Section 40 by showing that K;(G)=2, K;(D)2>2.
38.1%, Remark, This section is from Gehring-Vais&ld [2, pp.

7-11] .

39, Stherical rings

39.1. THEOREM. Let D be the stherical ring 1< ixi<a, and

let D' ©be the spherical ring 1< !x1<b. If a<b, then

logb logb \n-1
K D Dt T ——— ! o= — o

Proof, Set q=1logb/loga. Define f:D-»D' by f(x)=
1x19 "% . From 16.2 it follows that K (f)=q and K (f)=q" .
Hence it remains to prove that Kl(g)zq and Ko(g)zqn_q for
every homeomorthism g:D-»D'., If T = AO(S(’\) , 8(a) , D), then

M = A (5(1),8(b) ,D'), and we obtain by 7.5 and 1.3,

() wy_q (1log a)’l—n n-1
M(T') w4 (logd) @

= .

Kq(g) 2

To prove the inequality K;(g)>q we consider the family =
A(E,F,D) where b={te 11<t<a} and F={te |-a<t<-1]}.
Then it follows from 10,12 that N([ ) = c,loga and n(r' ) >

c,logb . This implies Kq(g)>M( ) /M(M)>q. ;

39.2. Remark. Contrary to the following sections, %9.1 has
sense also for n=2, However, in this case the proof is simpler,

because KI(D , DV) = KO(D , D).
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4O, Wedges

Throughout this section we assume that n>3%. We shall use in
r® cylindrical coordinates (r, ¢, z), defined in 16.3., As in 16.3,

we denote by D, the domain {stn|O<<o<a}, O<a<2n.

40.1. Definition. A domain DcR" 1is a wedge of angle o if
D can be mapped onto Da by a similarity mapring f . The image of
the (n-2)-dimensional subspace r =0 under £ is called the edge
of the wedge D. A boundary point b of a domain D 1is called a
wedge point of angle o« if there is a neighborhood U of b and
a wedge G of angle o such that b is on the edge of G and

such that UnNG=UND.

This section deals with mappings between domains which have
wedge points. In particular, we calculate the inner coefficient of a

convex wedge,

40,2. LEMMA, If b is a wedge point of angle o of a domain
D and if a<2n, then D 1is locally qclly bi-collared at b (see
35.4).

Froof, We may assume that b=0 and that DNB"=D, nB".
Define f:R* >R’ by f(r,e¢,z)=(r,ne/a,z) for O0<@<a and
f(r,9,2)=(r, n+nlp-a)/(2n-a) , z) for a<e¢e<2n. By 16.3, f is
gc in D, and in gﬁa. By 35.1, f 1is gc. Since f maps 8" onto
itself and B%n D, onto B n D, D is locally qclly bi-collared

at 0. M
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40,%, THEOREM, Suppose that X is a wedge point of angle a
of D and that Yo, 1s a wedge roint of angle 8 of D' such that
O<a<B<=mn. If f:D— D' 1is a homeomorphism such that Yo &

C(f,x,), then K (f)>B/a. The bound is best possible.

Froof, We may assume that f 1is qc. By 35.5 and 40.2 we can
find a neighborhood U of X, @ neighborhood U' of Yo and a
qc mapring g:U—-=>U' such that g1 UND=f1UND and such that
UaD=UNG, U'ND'=U'NG' where G and G' are wedges of angles
a and B, respectively. Let & be the edge of G. Since n>3%,
there is a point X4 & EATU such that L(x,‘ ,8)>0, since otherwise
g would be locally constant in EANU. Since g(x,‘) s g(yn dD) =
U' nap+, g(x,l) is a wedge point of angle a' of D' where a' is
either B or =n. To simplify notations we assume, as we may, that
X =0= g(x,‘} and that there are neighborhoods V and V' of O
such that gV=V' and such that VND=Vn Da.’ vendt=ve ﬂDa, .
Since H(O, g_q)< ® , there are positive constants H and r such
that Iyt<r irplies ysV' and that L(O, g"' » 1y1) <
H £(0, g_ll ,¥) . Next choose & such that 0<&86<L(0,g) and a se-

J

|g(zj)|<r. Set aj=|g(zj)|. If Iyl:aj, then Ig_q(y)sg
/‘

quence of points Z4 eV such that 2z, -0 and such that 6!zjs <

L0, g~ ,aj)gﬁf&(o,g"‘,aj)gﬁtzjugﬂaj/a . Set b=£0,g ", 1),
j

ring {ylaj<8y|<r}, and set rzjg{YsrL I!YICD'}. Then 7.7
J

and choose Jje& N such that Haj/6<b . Let A. Dbe the srherical

implies

%' Wy g
2n

.

oL 1-n
M = )

r
(loga’
J

On the other hand, T:J -t r;. is minorized by the family Ay=

A

{ve rR I 1y1cD } where Rj is the ring Haj/6< 1Xx1<b. Hence
J

aw
M(T)) < M(ay) = —2 (log %2;)“‘” :
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Consequently,
bd n-1
M(r'.) a log ma-
KI(f) > —_— > o _ .
M(T) log =
J aj

Letting j—> @ yields KI(f) >a'/a>B/a .
In 16.3% we showed that the folding f: Da—) DB has inner dila-

tation B/a . Hence the bound KI(f)ZB/a is sharp. M

40.4. THEOREM, If 0<a<8<m®, then KI(Da,DB)::B/a. In par-

ticular, X;(D ) =m/a for O<alm.

Proof., Suppose that f: Da—; DB is a qc mapring. Choose a point
X, on the edge of D, and a point yoec(f ,xo) such that yof .
Then Yo is a wedge point of angle a' of DB , where a' 1is
either B or m. Hence 40.3 implies K (f)>a'/a>8/a. This proves
KI(Da ’ DB)ze/a . On the other hand, since the folding of Do:. onto
DB has inner dilatation B/a, KI(Da s DB) <B/o . M

40.5. Remarks., 1. The value of KO(Da) is not known for
O<a<mn., However, it is easy to show that (n/a)q/(n_q)SKo(Da)S
n/a . The left-hand inequality follows from (38.3). Setting
f(r,¢,2)=(r, ng/a, nz/a) we obtain a qc mapping f:D, —>D; for
which Ko(a) = /& . This proves the right-hand inequality.

2. If m<a<2n, then both coefficients of Da are unknown.

3. Theorem 40.3% can easily be generalized to curvilinear wedges.

A domain D is said to have a curvilinear wedge of angle a at X, &

3D if for each K>1 there is a neighborhood U of x_ and a K-qc

o
marping f :U-—>B" such that f£(UNnD)=R"n D, . For example, if D
is an ordinary right cylinder in R5 , We have KI(D)22 .

4, One has been able to calculate the coefficients of gcty for

only very few domains. In addition to the convex wedge, one Knows
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the outer coefficient of an infinite cylinder and an infinite convex
cone (Gehring-Vdisdld [21), and the inner coefficient of an infinite
non-convex cone (Vamanamurthy {11). PFurthermore, one can show that
suitable deformations of these domains do not change the coefficient.
For example, if a<n and if D::DaLJ(DB-+eq) , then KI(D)==KI(Da)
=n/a if B is slightly greater than .

5. The result KI(Da)z n/o was first proved by Gehring and V&i-
si1d (21, by a different method. The above proof is due to Gehring,

and it is based on an idea of Syéev [1].

41, Jordan domains

As noted in Section 17, a Jordan domain D in E® need not be
homeomorphic to Bn, and even if so, it need not be qclly equivalent

to BM, However, it is known that D 1is homeomorphic to B

if it
has a collared boundary. By this we mean that there are neighborhoods
U of 3D and V of 3B® and a homeomorrhism £ :UnD-—>VnE°,

If, in addition, f is gqc in UND, we say that D has a guasji-

conformally collared boundary. The main result of this section states

that if D has a qclly collared boundary, then D 1is qclly equi-
valent to a ball,

41.1. LENMA. Suppose that

1) D, and D2 are Jordan domains such that 51r152= g and
= = n
DqIJD2<IB .
(2) B, and B, are open balls such that B NP, =¢ and
B, c BV,
(3) f£ 1is a homeomorphism of Q(DqlJDZ) onto Q(BqIJBZ) such
that foD; = 9B; , and f1C(D,UD,) is qc.

() f(x)=x in a neighborhood of CR",
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Then there exists a homeomorphism £~ : CDy > CB, such that i""lE)D2
= £13D, and such that f*ICD, 1is qc.

Froof. We may assume that there are numbers -1<a<b<1 such
that B,l and B2 lie in the half spaces xn<a and xn>b , Tre-—
spectively. Set

® ®

E= U (DyUDy+3de,), E'= U (ByUB,+35e,),

J=0 J=0
and define g:CE->CE' by g(x)-= f(x—ije,‘) +3je, if xs
(B2 + 3je4)\E for some jeNU {0}, and by g(x)=x otherwise.
Then g 1is obviously a homeomorthism. Moreover, every point x in
CE has a neighborhood U such that glU is composed of f and
translations. Hence K(gICE)<K(f). Set r=(b-a)/3, and define
k:R >8R by

k(t) = O for t <aa+r,
k(t) = (a+r-t)/r for a+r<t<b-r,
k(t) = -1 for t>b-r.

Setting h(x) =x + Ek(xn)e,‘ we obtain a homeomorphism h :R® — R".
Since h 1is piecewise linear, it follows from 35,1 that h 1is qc.

We show that setting

£¥(x) = g_q(h(g(x))) +3e, for x& RN E,
£¥(x) = x+3e, for x&D,+3je,, 320,
fF(x)=x for xeDy+3je,, J27,

f*(0) = @,

we obtain the required mapping.

It is clear that f* is bijective and that f™ is continuous
except possibly in the sets aDi-+Ejeq and at @ . Consider, for
example, a point x0558D1-+5je1 . Then x, has a neighborhood U

such that g(U\E)C(Bn+5,je,‘)n{x|xn<a+r}. For xeUNE we
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have g_q(h(g(x))) =x, Hence f* is continuous at X, . Furthermore,
it follows from the definition of f* +that 1f*(x)-x1<5 for all
finite x . Hence f* 1is continuous at . Thus f* is a homeo-
morphism.

Ir xedD,, then £*(x) =g (h(B(x) +3e, =g (£(x) - 3eq) +3e,
= f(x) . Finally, using 34.7 and 17.% we see that K(f*lgﬁz)s
K(g)?K(h) <.

41,2, LEMMA, In addition to (1), (2), and (3) of 41.1, suppose
that

(4') Os D, .

(5') crcatc BR.
Then there exists a homeomorphism f* ¢ QDZ—egB2 with the same pro-

perties as in #1.1.

Froof. Choose 0<a<b<71 such that B(a)e D, and D UD,c
B®(b) . Set q-=1logb/loga, and define g: R by gx)-=
1x1 V% for xeB® and g(x)=x for xsan. By 16.2 and 35.1, g
is qc. Set Dj=fgD,=CfgCD, and D =CfgCD,. Then fog maps CD,
onto CD), and h=fe(fog) ' maps C(DjuD)) onto C(B,UB,) .
Obviously, h satisfies the conditions (1), (2), (3) of 41.1, with
D, replaced by Di . Moreover, ngn is a neighborhood of an, and
if xs ngn, then h(x) = f(g_q(f_q(x))) =x. Thus h satisfies also
the condition (#) of 41.,1. Consequently, there is a homeomorphism
h* : CD; — CB, such that h"13D;=h13D) and such that n*1eD;  is
gc. The required mapping f* is obtained by setting f£*(x) =
h*(f(g(x)) . In fact, if x& 0D, , then fleg(x) sBDé , and £X¥(x) =
h(f(g(xM =f(x) . &

41,%, THEOREM. Suppose that f is a homeomorrhism of E-=

(xsR® 1a<1x1<1} onto a set IL'cR" such that f ! intE is qc.
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Let D be the component of QI‘Sn_Il whose closure contains E'.
Then there exists a homeomorphism f*:B" - D such that T

£152"  and such that f*I1B® is qc.

Proof., Choose a<b<1. The image of {x1b< 1x1<1} wunder f
can be written as Q(D,.| ] D2) where D, and D, are Jordan domains,
oD, = £57(b) and 9D, =157 =8D. Choose a Mobius transformation
g such that gﬁ,l c gt N g]_JZC B" and Os gD2 . Next choose a Mdbius

18-19Fn(23n_ Then rq=11of‘qog'q:

transformation h such that Chf~
¢(gD, U gD,) = C(hB"(b) UhCE") is a homeomorphism which satisfies

the conditions of #41.2., Hence there is a homeomorphism f,T : CeDy, =
nhE® such that ff{(x) = f,l(x) for x»s-agD2 and such that ff 1 ggﬁz

is gqc. The required mapping is then f*-= g_q cf:_qo h:8">D. M

41,4, COROLLARY. If a Jordan domain D has a qclly collared

boundary, then D is qclly equivalent to a ball. M

We next give a slightly strengthened version of 41.3%. Let A YDbe
the ring a<ix1<1, and let f:A->A' be a qc mapping. Observe

that f need not be defined on Sn'/‘

. Then A' 1is a ring

R(CO y C’l) , and we choose the notation so that C(f, Sn_/‘)c Cq. We
show that the domain D=QC,l is qclly equivalent to B, Fix a<b
<1. Applying 41.3 we find a homeomorphism f£* of F°(b) onto the
closure of the component of gfsn"‘(b) which contains C_, such
that £*¥15277(b) = £15°7(b) and such that £¥1B%(b) is qc. Defining
£%(x) = £f(x) for b<Ix1<1 we obtain a homeomorphism f£* :B® —>D.

By %5.1, f* is gc. We have thus proved:

41,5, THEOREM., Suppose that f is a qc mapping of the spherical

ring a<1x1<1 onto a ring A', Denote by C’l the component of

n-’l)

CA' which contains the cluster set C(f,S . Then for each
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be (a,1) there is a gc mapping f*:B">CC, such that f£¥*(x) = f£(x)
for bL<IxI<1. M

In particular, the mapping f* of 41.% can be chosen so that
£*(x) = £(x) for b<LIX1<1.

We finally give an application of 41.3%.

41,6, THEOREM, Suppose that f: B® > D is a qc mapping. Then
for every compact set Fc B® there is a gc mapping f£*:R® >R

such that f*1F=fIF,

Froof. Choose b<1 such that Fec B%(b) . Applying 41.% to
fog , where g 1is a suitable inversion, we can find a homeomorthism
£x :an(b)-a»ngn(b) such that f£*(x)=f(x) for I1x1=1b and such
that f*lgEn(b) is gc. Defining f*(x) =f(x) for 1x1<b we obtain

the required mapping. M

41.7. Remarks. 1. This section is from Gehring [6}. The topo-
logical form of 41.4 was proved in 1959 by Mazur {1] under an addi-
tional niceness condition. The proof of #1.1 is an explicit version
of Mazur's proof. In 1960 Morse [2] showed how to get rid of this
surerfluous condition. The proof of #1.2 is an explicit version of
Morse's proof. A different proof for the topological case was given
simultaneously by Brown [1]. His troof, however, makes use of non-qc
homeomorphisms. The troof given in these notes applies also to the
topological case, because the gqcty of f was used only to conclude
the qcty of £ .

2. From 41.4 it follows that a Jordan domain with smooth bounda-
ry is qclly equivalent to a ball. Indeed, suppose that g is a
diffeomorphism of Sn—1 onto a differentiable submanifold of R".

Then it can be shown (Morse [1]) that g can be extended to a 1
diffeomorphism, and hence to a qc marping, of a neighborhood of &7,
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A list of special symbols is given on pages X-XI.

absolute continuity on a path 11

absolutely continuocus set
function 81

ACL-mapping 88,107

ACL”-napping 89,111,116

almost every curve 17

analytic definition 114,115,117

arc 6,24

Ascoli's theorem 68

ball neighborhood VIII

Borel function IX

Borel set IX

boundary extension 51-63%,120

change of parameter &

closed path 1,21

cluster set 59

coefficient of qcty 127

collared boundary 63,135

exceptional set 52,62,118
extremal mapping 127
finitely connected 53
folding 49,134

Fuglede's theorem 95
Hausdorff measure 99
Hlder continuity 65
50,135
inner dilatation 42,43

inverse of a path 5

infinite cylinder

isolated singularity 52
Join 21,23

Jordan domain 60,135
kernel 73%,129
Lebesgue's theorem 82
length function 2
length of a path 1

line integral 8

condition (N) 85,112
cone 50,135

linear dilatation 43%,78,113
Liouville's theorem V,15,43%

conformal mapping 13,25 locally connected 53
convergent sequences 69-77,123-126 1locally qgclly bi-collared 120
convolution 89 locally gclly collared 54
c-uniform convergence 68 locally rectifiable path 7
curve 10 maximal dilatation 42

curvilinear wedge 1%4
cylinder 21,118

cylinder, infinite 50,135
cylindrical coordinates 49
density theorem 83

derivative of a mapping VIII
derivative of a set function 82
diffeomorphism 46
differentiability VIII,97,109
dilatation 42,43

distortion 63-65
equicontinuity 65-67

metric definition 113
minorize 17

M8bius transformation 14
modulus 16

modulus on a manifold 28
(N), condition 85,112
neighborhood VIII

normal family 67-69
normal representation 5
open path 1,7,23%

outer dilatation 42,43
parameter of regularity 82



partial derivative 86

path 1,7

point of density 83
projection 51

property Pq 53

property P2 54
quasiconformal = gc 42
qclly collared boundary 63,135
gclly equivalent domains 43
quasiregular mapping VI
Rademacher-Stepancv theorem 97
radial mapping 49

raylike domain 130
rectifiable path 1
reflection principle 119
removable singularity 52,62,118
ring 32

ring definition 121
separate curve families 17
set function 81

smoothing 89

spherical coordinates 50
spherical distance 37
spherical isometry 38
spherical ring 22,131
stereographic projection 37
subpath 1

support 89

symmetrization VI, 26
volume derivative 83

wedge 49,132-135

wedge point 132



