Precise Catalytic Organic Transformations

Publications

(47) Selective Cascading Hydroboration of N-Heteroarenes via Cobalt Catalysis

R. Wang, D. Kim, S. Park*

ACS Catal. Accepted (2024)

(46) First-Row Transition Metal-Catalyzed Single Hydroelementation of N-Heteroarenes

S. Park*

ChemCatChem, e202301422 (2023)

(45) Rhodium-Catalyzed Double Hydroboration of Quinolines 

R. Wang, S. Park*

ACS Catal. 2023, 13, 7067–7078.

(44) Rhodium-Catalyzed Double Hydroboration of Pyridine: The Origin of the Chemo- and Regioselectivities 

H. Choi, R. Wang, S. Kim, D. Kim, M.-H. Baik,* S. Park*

Catal. Sci. Technol. 2023,13, 2735–2747.

(43) Comparative DFT Study on Dehydrogenative C(sp)−H Elementation (E = Si, Ge, and Sn) of Terminal Alkynes Catalyzed by a Cationic Ruthenium(II) Thiolate Complex

L. Yahui, M. Zhou, S. Park,* and L. Dang*

Inorg. Chem. 2021, 60, 6228-6238. 

(42) Recent Advances in Metal-Catalyzed Asymmetric Hydroboration of Ketones

R. Wang, S. Park*

ChemCatChem 2021, 13, 1898-1919. 

(41) Recent advances in transition metal-free catalytic hydroelementation (E = B, Si, Ge, and Sn) of alkynes

V. B. Saptal, R. Wang, S. Park*

RSC Adv. 2020, 10, 43539-43565.

(40) Light-mediated olefin coordination polymerization and photoswitches

M. Li, R. Wang, M. S. Eisen, S. Park*

Org. Chem. Front. 2020, 7, 2088-2106. 

(39) Recent Advances in Catalytic Dearomative Hydroboration of N-Heteroarenes

S. Park*

ChemCatChem 2020, 12, 3170-3185.

(38) Dual Reactivity of B(C6F5)3 Enables the Silylative Cascade Conversion of N-Aryl Piperidines to Sila-N-Heterocycles: DFT Calculations

M. Zhou, S. Park,* L. Dang*

Org. Chem. Front. 2020, 7, 944-952. 

(37) B(C6F5)3-Catalyzed sp3 C-Si Bond Forming Cascade Reactions

S. Park*

Chin. J. Chem. 2019, 37, 1057-1071.

(36) Catalytic Reduction of Cyclic Ethers with Hydrosilanes

S. Park*

Chem. Asian J. 2019, 14, 2048-2066.

—————————————————————————————————Publications at GTIIT———————————————————————————————————-

(35) Double Hydroboration of Quinolines via Borane Catalysis: Diastereoselective One-Pot Synthesis of 3-Hydroxytetrahydroquinolines

E. Kim, H. J. Jeon, S. Park,* S. Chang*

Adv. Synth. Catal. 2019 (doi: adsc.201901050) 

(34) Metal-Free Carbocyclization of Homoallylic Silyl Ethers Leading to Cyclopropanes and Cyclobutanes

J. Zhang, C. K. Hazra, S. Park, S. Chang*

Asian J. Org. Chem. 2019 (doi:10.1002/ajoc.201900270)

(33) Alkoxide-Promoted Selective Hydroboration of N-Heteroarenes: Pivotal Roles of in situ Generated BH3 in the Dearomatization Process

E. Jeong, H. Heo, S. Park,* S. Chang*

Chem. Eur. J. 2019, 25, 6320-6325.

(32) Sequential C-H Borylation and N-Demethylation of 1,1’-Biphenylamines: An Alternative Route to Polycyclic BN-Heteroarenes

J. Zhang, H. Jung, D.-W. Kim, S. Park,* and S. Chang*

Angew. Chem. Int. Ed. 2019, 58, 7361-7365.

(31) Catalytic Access to Bridged Sila-N-Heterocycles from Piperidines via Cascade sp3 and sp2 C-Si Bond Formation

  1. Zhang, S. Park,* and S. Chang*
  2. Am. Chem. Soc. 2018, 140, 13209-13213 (Highlighted in JACS Spotlights, Chem-Station, and Synfacts).

(30) Piers’ Borane-Mediated Hydrosilylation of Epoxides and Cyclic Ethers

J. Zhang, S. Park,* and S. Chang*

Chem. Commun. 2018, 54, 7243-7246.

(29) Silylative Reductive Amination of a,b-Unsaturated Aldehydes: A Convenient Synthetic Route to b-Silylated Secondary Amines

E. Kim, S. Park,* and S. Chang*

Chem. Eur. J. 2018, 24, 5765-5769.

(28) Reductive Carbocyclization of Homoallylic Alcohols to syn-Cyclobutanes via Boron-Catalyzed Dual Ring-Closing Pathway

C. K. Hazra, J. Jeong, H. Kim, M.-H. Baik,* S. Park,* and S. Chang*

Angew. Chem. Int. Ed. 2018, 57, 2692-2696.

(27) Selective C-O Bond Cleavage of Sugars with Hydrosilanes Catalyzed by Piers’ Borane Generated In Situ

J. Zhang, S. Park,* and S. Chang*

Angew. Chem. Int. Ed. 2017, 56, 13757-13761 (Highlighted in Organic Chemistry Portal).

(26) Boron-Catalyzed Hydrogenative Reduction of Substituted Quinolines to Tetrahydroquinolines with Hydrosilanes

N. Gandhamsetty, S. Park,* and S. Chang*

Synlett 2017, 28, 2396-2400 (Highlighted in Organic Chemistry Portal).

(25) Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds

S. Park* and S. Chang*

Angew. Chem. Int. Ed. 2017, 56, 7720-7738 + Angew. Chem. 2017, 129, 7828-7847.

(24) Borane Catalyzed Ring Opening and Closing Cascades of Furans Leading to Silicon Functionalized Synthetic Intermediates

C. K. Hazra, N. Gandhamsetty, S. Park, and S. Chang*

Nat. Commun. 2016, 7, 13431 (Highlighted in Synform).

(23) Iridium-Catalyzed Selective 1,2-Hydrosilylation of N-Heterocycles

J. Jeong, S. Park,* and S. Chang*

Chem. Sci. 2016, 7, 5362-5370.

(22) Selective Silylative Reduction of Pyridines Leading to Structurally Diverse Azacyclic Compounds with the Formation of sp3 C-Si Bonds

N. Gandhamsetty, S. Park,* and S. Chang*

J. Am. Chem. Soc. 2015, 137, 15176-15184.

(21) Boron-Catalyzed Silylative Reduction of Nitriles in Accessing Primary Amines and Imines

N. Gandhamsetty, J. Jeong, J. Park, S. Park, and S. Chang*

J. Org. Chem. 2015, 80, 7281-7287 (Highlighted in Organic Chemistry Portal).

(20) Chemoselective Silylative Reduction of Conjugated Nitriles under Metal-Free Catalytic Conditions Leading to β-Silyl Amines and Enamines

N. Gandhamsetty, J. Park, J. Jeong, S. W. Park, S. Park, and S. Chang*

Angew. Chem. Int. Ed. 2015, 54, 6832-6836 (Highlighted in Organic Chemistry Portal).

(19) Dual Role of Carboxylic Acid Additive: Mechanistic Studies and Implication for the Asymmetric C-H Amidation

D. Gwon, S. Park, and S. Chang*

Tetrahedron, 2015, 71, 4504-4511.  

(18) Boron-Catalyzed Silylative Reduction of Quinolines: Selective sp3 C-Si Bond Formation

N. Gandhamsetty, S. Joung, S.-W. Park, S. Park,* and S. Chang*

J. Am. Chem. Soc. 2014, 136, 16780-16783 (Highlighted in JACS Spotlights).

(17) Iridium(III)-Catalyzed C-H Amidation of Arylphosphoryls Leading to a P-Stereogenic Center

D. Gwon, D. Lee, J. Kim, S. Park,* and S. Chang*

Chem. Eur. J. 2014, 20, 12421-12425 (Highlighted in Synfacts).

(16) Comparative Investigations of Cp*-Based Group 9 Metal-Catalyzed Direct C-H Amination of Benzamides

T. M. Figg, S. Park, J. Park, S. Chang,* and D. G. Musaev* (: equal contribution)

Organometallics 2014, 33, 4076-4085.

(15) Selective Reduction of Carboxylic Acids to Aldehydes Catalyzed by B(C6F5)3

D, Bezier, S. Park, and M. Brookhart

Org. Lett. 2013, 15, 496-499.

(14) An Efficient Iridium Catalyst for Reduction of Carbon Dioxide to Methane with Trialkylsilanes

S. Park, D, Bezier, and M. Brookhart*

J. Am. Chem. Soc. 2012, 134, 11404-11407.

(13) Redistribution of Trialkyl Silanes Catalyzed by Iridium Silyl Complexes

S. Park, B. G. Kim, Göttker-Schnetmann, I, and M. Brookhart*

ACS Catal. 2012, 2, 307-316.

(12) Development and Mechanistic Investigation of a Highly Efficient Ir(V) Silyl Complex for the Reduction of Tertiary Amides to Amines

S. Park, and M. Brookhart*

J. Am. Chem. Soc. 2012, 134, 640-653.

(11) Hydrosilylation of Epoxides with a Cationic h1-Silane Iridium(III) Complex

S. Park, and M. Brookhart*

Chem. Commun. 2011, 47, 3643-3645.

(10) Hydrosilylation of Carbonyl-Containing Substrates Catalyzed by an Electrophilic h1-Silane Iridium(III) Complex

S. Park, and M. Brookhart*

Organometallics 2010, 29, 6057-6064.     

(9) Cyclopolymerization and Copolymerization of Functionalized 1,6-Heptadienes Catalyzed

by Pd Complexes: Mechanism and Application to Physical Gel Formation

S. Park, T. Okada, D. Takeuchi, and K. Osakada*

Chem. Eur. J. 2010, 16, 8662-8678 (Cover Picture Paper). 

(8) Cyclopolymerization of 9,9-Diallyl Fluorene Promoted by Ni Complexes: Stereoselective Formation of Six- and Five-Membered Rings during the Polymer Growth

D. Takeuchi, Y. Fukuda, S. Park, and K. Osakada*

Macromolecules 2009, 42, 5909-5912.

(7) Controlled Cyclopolymerization of Dienes by Late Transition Metal Complexes

D. Takeuchi, S. Park, and K. Osakada*

J. Synth. Org. Chem., Jpn. 2008, 66, 1049.

(6) Novel Precision Cyclopolymerization of Dienes by Late Transition Metal Catalysts

D. Takeuchi, S. Park, T. Okada, R. Matsuura, and K. Osakada*

Kobunshi Ronbunshu, 2007, 64, 597-606.

(5) Cyclopolymerization of 1,6-Heptadienes Catalyzed by Iron and Cobalt Complexes: Synthesis of Polymers with Trans- or Cis-Fused 1,2-Cyclopentanediyl Groups Depending on the Catalyst

D. Takeuchi, R. Matsuura, S. Park, and K. Osakada*

J. Am. Chem. Soc. 2007, 129, 7002-7003.

(4) Pd-Catalyzed Polymerization of Dienes that Involves Chain-Walking Isomerization of the Growing Polymer End: Synthesis of Polymers Composed of Polymethylene and Five-Membered-Ring Units

T. Okada, S. Park, D. Takeuchi, and K. Osakada*

Angew. Chem. Int. Ed. 2007, 46, 6141-6143 [Inside Cover Picture Paper].

(3) Pd Complex-Promoted Cyclopolymerization of Functionalized a,w-Dienes and Copolymerization with Ethylene to Afford Polymers with Cyclic Repeating Units

S. Park, D. Takeuchi, and K. Osakada*

J. Am. Chem. Soc. 2006, 128, 3510-3511.

(2) Pd Complex-Promoted Cyclopolymerization of Diallylmalonates

S. Park, D. Takeuchi, and K. Osakada*

Studies in Surface Science and Catalysis 2006, 161, 201-204.

(1) Preparation of Human Epidermal Growth Factor/Low-Molecular-Weight Chitosan Conjugates and Their Effect on the Proliferation of Human Dermal Fibroblasts in Vitro

T. I. Son*, S. Park, H. S. Kang, Y. S. Son, C. H. Kim, and E. Jang

J. Ind. Eng. Chem. 2005, 11, 34.

10. Invited lecture in University of Tsukuba and lunch photo with Prof. Kuwabara (September 22, 2023).

10. Invited lecture in University of Tsukuba and lunch photo with Prof. Kuwabara (September 22, 2023).